HOAH: A Hybrid TCP Throughput Prediction with Autoregressive Model and Hidden Markov Model for Mobile Networks

被引:12
|
作者
Wei, Bo [1 ]
Kanai, Kenji [2 ]
Kawakami, Wataru [1 ]
Katto, Jiro [2 ]
机构
[1] Waseda Univ, Grad Sch Fundamental Sci & Engn, Tokyo 1698555, Japan
[2] Waseda Univ, Tokyo, Japan
关键词
throughput prediction; Autoregressive Model; Hidden Markov Model; mobile networks; support vector machine; TIME-SERIES;
D O I
10.1587/transcom.2017CQP0007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Throughput prediction is one of the promising techniques to improve the quality of service (QoS) and quality of experience (QoE) of mobile applications. To address the problem of predicting future throughput distribution accurately during the whole session, which can exhibit large throughput fluctuations in different scenarios ( especially scenarios of moving user), we propose a history-based throughput prediction method that utilizes time series analysis and machine learning techniques for mobile network communication. This method is called the Hybrid Prediction with the Autoregressive Model and Hidden Markov Model (HOAH). Different from existing methods, HOAH uses Support Vector Machine (SVM) to classify the throughput transition into two classes, and predicts the transmission control protocol (TCP) throughput by switching between the Autoregressive Model (AR Model) and the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM). We conduct field experiments to evaluate the proposed method in seven different scenarios. The results show that HOAH can predict future throughput effectively and decreases the prediction error by a maximum of 55.95% compared with other methods.
引用
收藏
页码:1612 / 1624
页数:13
相关论文
共 50 条
  • [21] MOOCS DROPOUT PREDICTION BASED ON HIDDEN MARKOV MODEL
    Zhu, Huisheng
    Wang, Yan
    Chen, Shuwen
    Ni, Yiyang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (05) : 879 - 889
  • [22] Hidden Markov and Markov Switching Model for Primary User Channel State Prediction in Cognitive Radio
    Mikaeil, Ahmed Mohammed
    Guo, Bin
    Bai, Xuemei
    Wang, Zhijun
    2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 854 - 859
  • [23] Characteristic of Markov Switching Model: An Autoregressive Model
    Awirothananon, Thatphong
    ASIASIM 2014, 2014, 474 : 368 - 381
  • [24] Markov Financial Model Using Hidden Markov Model
    Luc Tri Tuyen
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 40 (10): : 72 - 83
  • [25] Stock price prediction using a novel approach in Gaussian mixture model-hidden Markov model
    Gopinathan, Kala Nisha
    Murugesan, Punniyamoorthy
    Jeyaraj, Joshua Jebaraj
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2024, 17 (01) : 61 - 100
  • [26] Dynamic Threshold Based Throughput Enhancement in Cognitive Radio Network Using Hidden Markov Model with State Prediction
    Ashim Jyoti Gogoi
    Krishna Lal Baishnab
    Wireless Personal Communications, 2020, 115 : 1973 - 1991
  • [27] Dynamic Threshold Based Throughput Enhancement in Cognitive Radio Network Using Hidden Markov Model with State Prediction
    Gogoi, Ashim Jyoti
    Baishnab, Krishna Lal
    WIRELESS PERSONAL COMMUNICATIONS, 2020, 115 (03) : 1973 - 1991
  • [28] Hidden Markov Model Based Islanding Prediction in Smart Grids
    Kumar, Dhruba
    Bhowmik, Partha Sarathee
    IEEE SYSTEMS JOURNAL, 2019, 13 (04): : 4181 - 4189
  • [29] Freeway Traffic Flow Prediction Based on Hidden Markov Model
    Jiang, Jiyang
    Guo, Tangyi
    Pan, Weipeng
    Lu, Yi
    INTERNATIONAL CONFERENCE ON INTELLIGENT TRAFFIC SYSTEMS AND SMART CITY (ITSSC 2021), 2022, 12165
  • [30] Welding Quality Prediction Method Based on Hidden Markov Model
    Sun, Xiaobao
    Liu, Yang
    Wang, Dongyao
    Ye, Hang
    2022 IEEE 2ND INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SOFTWARE ENGINEERING (ICICSE 2022), 2022, : 236 - 240