Evolution of stomatal closure to optimize water-use efficiency in response to dehydration in ferns and seed plants

被引:81
作者
Yang, Yu-Jie [1 ]
Bi, Min-Hui [1 ]
Nie, Zheng-Fei [1 ]
Jiang, Hui [1 ]
Liu, Xu-Dong [1 ]
Fang, Xiang-Wen [1 ]
Brodribb, Timothy J. [2 ]
机构
[1] Lanzhou Univ, Sch Life Sci, State Key Lab Grassland Agroecosyst, Lanzhou 730000, Gansu, Peoples R China
[2] Univ Tasmania, Sch Biol Sci, Hobart, Tas 7001, Australia
基金
中国国家自然科学基金;
关键词
abscisic acid (ABA); drought stress; fern; seed plant; stomatal conductance; water‐ use efficiency; LEAF GAS-EXCHANGE; ABSCISIC-ACID; HYDRAULIC CONDUCTANCE; PHOTOSYNTHETIC CAPACITY; DROUGHT; ABA; LIMITATIONS; MECHANISMS; CO2; ANGIOSPERMS;
D O I
10.1111/nph.17278
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants control water-use efficiency (WUE) by regulating water loss and CO2 diffusion through stomata. Variation in stomatal control has been reported among lineages of vascular plants, thus giving rise to the possibility that different lineages may show distinct WUE dynamics in response to water stress. Here, we compared the response of gas exchange to decreasing leaf water potential among four ferns and nine seed plant species exposed to a gradually intensifying water deficit. The data collected were combined with those from 339 phylogenetically diverse species obtained from previous studies. In well-watered angiosperms, the maximum stomatal conductance was high and greater than that required for maximum WUE, but drought stress caused a rapid reduction in stomatal conductance and an increase in WUE in response to elevated concentrations of abscisic acid. However, in ferns, stomata did not open beyond the optimum point corresponding to maximum WUE and actually exhibited a steady WUE in response to dehydration. Thus, seed plants showed improved photosynthetic WUE under water stress. The ability of seed plants to increase WUE could provide them with an advantage over ferns under drought conditions, thereby presumably increasing their fitness under selection pressure by drought.
引用
收藏
页码:2001 / 2010
页数:10
相关论文
共 61 条
[1]   Rate of stomatal opening, shoot hydraulic conductance and photosynthetic characteristics in relation to leaf abscisic acid concentration in six temperate deciduous trees [J].
Aasamaa, K ;
Sober, A ;
Hartung, W ;
Niinemets, Ü .
TREE PHYSIOLOGY, 2002, 22 (04) :267-276
[2]   A multi-species synthesis of physiological mechanisms in drought-induced tree mortality [J].
Adams, Henry D. ;
Zeppel, Melanie J. B. ;
Anderegg, William R. L. ;
Hartmann, Henrik ;
Landhausser, Simon M. ;
Tissue, David T. ;
Huxman, Travis E. ;
Hudson, Patrick J. ;
Franz, Trenton E. ;
Allen, Craig D. ;
Anderegg, Leander D. L. ;
Barron-Gafford, Greg A. ;
Beerling, David J. ;
Breshears, David D. ;
Brodribb, Timothy J. ;
Bugmann, Harald ;
Cobb, Richard C. ;
Collins, Adam D. ;
Dickman, L. Turin ;
Duan, Honglang ;
Ewers, Brent E. ;
Galiano, Lucia ;
Galvez, David A. ;
Garcia-Forner, Nuria ;
Gaylord, Monica L. ;
Germino, Matthew J. ;
Gessler, Arthur ;
Hacke, Uwe G. ;
Hakamada, Rodrigo ;
Hector, Andy ;
Jenkins, Michael W. ;
Kane, Jeffrey M. ;
Kolb, Thomas E. ;
Law, Darin J. ;
Lewis, James D. ;
Limousin, Jean-Marc ;
Love, David M. ;
Macalady, Alison K. ;
Martinez-Vilalta, Jordi ;
Mencuccini, Maurizio ;
Mitchell, Patrick J. ;
Muss, Jordan D. ;
O'Brien, Michael J. ;
O'Grady, Anthony P. ;
Pangle, Robert E. ;
Pinkard, Elizabeth A. ;
Piper, Frida I. ;
Plaut, Jennifer A. ;
Pockman, William T. ;
Quirk, Joe .
NATURE ECOLOGY & EVOLUTION, 2017, 1 (09) :1285-1291
[3]   Transpiration, photosynthetic responses, tissue water relations and dry mass partitioning in Callistemon plants during drought conditions [J].
Alvarez, Sara ;
Navarro, Alejandra ;
Nicolas, Emilio ;
Jesus Sanchez-Blanco, M. .
SCIENTIA HORTICULTURAE, 2011, 129 (02) :306-312
[4]   Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2 [J].
Assmann, Sarah M. ;
Jegla, Timothy .
CURRENT OPINION IN PLANT BIOLOGY, 2016, 33 :157-167
[5]   Multi-extent analysis of the relationship between pteridophyte species richness and climate [J].
Bickford, Sophia A. ;
Laffan, Shawn W. .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2006, 15 (06) :588-601
[6]   ADAPTATIONS TO ENVIRONMENTAL STRESSES [J].
BOHNERT, HJ ;
NELSON, DE ;
JENSEN, RG .
PLANT CELL, 1995, 7 (07) :1099-1111
[7]   Angiosperm leaf vein evolution was physiologically and environmentally transformative [J].
Boyce, C. Kevin ;
Brodribb, Tim J. ;
Feild, Taylor S. ;
Zwieniecki, Maciej A. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2009, 276 (1663) :1771-1776
[8]   Dynamics of changing intercellular CO2 concentration (c(i)) during drought and determination of minimum functional c(i) [J].
Brodribb, T .
PLANT PHYSIOLOGY, 1996, 111 (01) :179-185
[9]   Leaf maximum photosynthetic rate and venation are linked by hydraulics1[W][OA] [J].
Brodribb, Tim J. ;
Feild, Taylor S. ;
Jordan, Gregory J. .
PLANT PHYSIOLOGY, 2007, 144 (04) :1890-1898
[10]   Passive Origins of Stomatal Control in Vascular Plants [J].
Brodribb, Tim J. ;
McAdam, Scott A. M. .
SCIENCE, 2011, 331 (6017) :582-585