Kernelization of the 3-path vertex cover problem

被引:3
|
作者
Brause, Christoph [1 ]
Schiermeyer, Ingo [1 ]
机构
[1] Tech Univ Bergakad Freiberg, Inst Discrete Math & Algebra, Pruferstr 1, D-09599 Freiberg, Germany
关键词
k-path vertex cover; Vertex cover; Kernelization; Crown reduction; P-3; PROBLEM; APPROXIMATION ALGORITHM; GRAPHS;
D O I
10.1016/j.disc.2015.12.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The 3-path vertex cover problem is an extension of the well-known vertex cover problem. It asks for a vertex set S subset of V(G) of minimum cardinality such that G - S only contains independent vertices and edges. In this paper we will present a polynomial algorithm which computes two disjoint sets T-1, T-2 of vertices of G such that (i) for any 3-path vertex cover S' in G[T-2], S' U T-1 is a 3-path vertex cover in G, (ii) there exists a minimum 3-path vertex cover in G which contains T-1 and (iii) vertical bar T-2 vertical bar <= 6 . psi(3)(G[T-2]), where psi(3)(G) is the cardinality of a minimum 3-path vertex cover and T-2 is the kernel of G. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1935 / 1939
页数:5
相关论文
共 50 条
  • [21] Complexity of the Maximum k-Path Vertex Cover Problem
    Miyano, Eiji
    Saitoh, Toshiki
    Uehara, Ryuhei
    Yagita, Tsuyoshi
    van der Zanden, Tom C.
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2020, E103A (10) : 1193 - 1201
  • [22] Vertex Cover Kernelization Revisited: Upper and Lower Bounds for a Refined Parameter
    Jansen, Bart M. P.
    Bodlaender, Hans L.
    28TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2011), 2011, 9 : 177 - 188
  • [23] Efficient algorithm for the vertex cover Pk problem on cacti
    Tu, Jianhua
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 311 : 217 - 222
  • [24] Mean analysis of an online algorithm for the vertex cover problem
    Birmele, Etienne
    Delbot, Francois
    Laforest, Christian
    INFORMATION PROCESSING LETTERS, 2009, 109 (09) : 436 - 439
  • [25] Stackelberg Vertex Cover on a Path
    Eickhoff, Katharina
    Kauther, Lennart
    Peis, Britta
    ALGORITHMIC GAME THEORY, SAGT 2023, 2023, 14238 : 22 - 39
  • [26] On a relation between k-path partition and k-path vertex cover
    Brause, Christoph
    Krivos-Bellus, Rastislav
    DISCRETE APPLIED MATHEMATICS, 2017, 223 : 28 - 38
  • [27] PTAS for minimum k-path vertex cover in ball graph
    Zhang, Zhao
    Li, Xiaoting
    Shi, Yishuo
    Nie, Hongmei
    Zhu, Yuqing
    INFORMATION PROCESSING LETTERS, 2017, 119 : 9 - 13
  • [28] Vertex-Bipartition: A Unified Approach for Kernelization of Graph Linear Layout Problems Parameterized by Vertex Cover
    Liu, Yunlong
    Li, Yixuan
    Huang, Jingui
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (06) : 609 - 629
  • [29] Path Vertex Cover Number of Some Product Graphs
    Liu, Yan
    Deng, Xingchao
    JOURNAL OF INTERCONNECTION NETWORKS, 2024,
  • [30] Approximation algorithms for the partition vertex cover problem
    Bera, Suman K.
    Gupta, Shalmoli
    Kumar, Amit
    Roy, Sambuddha
    THEORETICAL COMPUTER SCIENCE, 2014, 555 : 2 - 8