1-greedy renormings of Garling sequence spaces

被引:5
作者
Albiac, Fernando [1 ]
Ansorena, Jose L. [2 ]
Wallis, Ben [3 ]
机构
[1] Univ Publ Navarra, Math Dept, Campus Arrosadia, Pamplona 31006, Spain
[2] Univ La Rioja, Dept Math & Comp Sci, Logrono 26004, Spain
[3] Northern Illinois Univ, Dept Math Sci, De Kalb, IL 60115 USA
关键词
Subsymmetric basis; Greedy basis; Renorming; Property (A); Sequence spaces; Superreflexivity; Uniform convexity; BANACH-SPACES; GREEDY BASES;
D O I
10.1016/j.jat.2018.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that all Garling sequence spaces admit a renorming with respect to which their standard unit vector basis is 1-greedy. We also discuss some additional properties of these Banach spaces related to uniform convexity and superreflexivity. In particular, our approach to the study of the superreflexivity of Garling sequence spaces provides an example of how essentially non-linear tools from greedy approximation can be used to shed light on the linear structure of these spaces. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 16 条
[1]  
Albiac E, 2016, GRADUATE TEXTS MATH, V233
[2]   Characterization of 1-greedy bases [J].
Albiac, F ;
Wojtaszczyk, P .
JOURNAL OF APPROXIMATION THEORY, 2006, 138 (01) :65-86
[3]   Lorentz Spaces and Embeddings Induced by Almost Greedy Bases in Banach Spaces [J].
Albiac, F. ;
Ansorena, J. L. .
CONSTRUCTIVE APPROXIMATION, 2016, 43 (02) :197-215
[4]  
Albiac F., 2018, J LOND MATH SOC, DOI [10.1112/j1ms.12120, DOI 10.1112/J1MS.12120]
[5]   OPTIMALITY OF THE REARRANGEMENT INEQUALITY WITH APPLICATIONS TO LORENTZ-TYPE SEQUENCE SPACES [J].
Albiac, Fernando ;
Ansorena, Jose L. ;
Leung, Denny ;
Wallis, Ben .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01) :127-132
[6]   UNIFORM CONVEXITY IN LORENTZ SEQUENCE SPACES [J].
ALTSHULER, Z .
ISRAEL JOURNAL OF MATHEMATICS, 1975, 20 (3-4) :260-274
[7]   A NOTE ON SUBSYMMETRIC RENORMINGS OF BANACH SPACES [J].
Ansorena, J. L. .
QUAESTIONES MATHEMATICAE, 2018, 41 (05) :615-628
[8]   Renormings and symmetry properties of 1-greedy bases [J].
Dilworth, S. J. ;
Odell, E. ;
Schlumprecht, Th. ;
Zsak, A. .
JOURNAL OF APPROXIMATION THEORY, 2011, 163 (09) :1049-1075
[9]   The thresholding greedy algorithm, greedy bases, and duality [J].
Dilworth, SJ ;
Kalton, NJ ;
Kutzarova, D ;
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) :575-597
[10]   BANACH SPACES WHICH CAN BE GIVEN AN EQUIVALENT UNIFORMLY CONVEX NORM [J].
ENFLO, P .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (3-4) :281-288