High-strength graphene and polyacrylonitrile composite fiber enhanced by surface coating with polydopamine

被引:33
作者
Kim, Hyunsoo [1 ]
Jalili, Rouhollah [2 ]
Spinks, Geoffrey M. [3 ]
Wallace, Gordon G. [3 ]
Kim, Seon Jeong [1 ]
机构
[1] Hanyang Univ, Dept Biomed Engn, Ctr Self Powered Actuat, Seoul 04763, South Korea
[2] RMIT Univ, Coll Sci Engn & Hlth, Sch Sci, Melbourne, Vic 3001, Australia
[3] Univ Wollongong, AIIM Facil, ARC Ctr Excellence Electromat Sci, Intelligent Polymer Res Inst, Innovat Campus, North Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
Graphene oxide; Polyacrylonitrile; Surface coating; Pyrolysis; High strength; LIQUID-CRYSTALLINE DISPERSIONS; CARBON NANOTUBES; OXIDE; PERFORMANCE; ULTRASTRONG; YARNS; NANOFIBERS; LIGHT;
D O I
10.1016/j.compscitech.2017.05.029
中图分类号
TB33 [复合材料];
学科分类号
摘要
Carbon fibers are well-known reinforcing elements in advanced composites, but these materials remain expensive partly due to the complex processing methods used to form high strength and, high modulus fibers. Graphene is seen as an alternative precursor for the formation of high strength carbon-based fibers. Here it is shown that the strength and modulus of graphene-based fibers are enhanced by incorporating a polyacrylonitrile (PAN) binder, surface coating with polydopamine (PDA) and through appropriate pyrolysis heat treatments. Fiber samples were prepared by a wet-spinning method such that the composition of liquid-crystalline graphene oxide (LCGO) and PAN could be varied over the full range. The maximum fiber mechanical strength (220 MPa) and modulus (19 GPa) occurred at a composition of LCGO (80 wt%) and PAN (20 wt%). The mechanical strength was further significantly increased to 526 MPa through pyrolysis of the LCGO/PAN fiber at 800 degrees C in a nitrogen atmosphere which caused carbonization of PAN. In addition, surface treatment of the LCGO/PAN fiber with PDA before carbonization improved the mechanical strength by an additional 40%. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:280 / 285
页数:6
相关论文
共 41 条
[1]   High-Performance Multifunctional Graphene Yarns: Toward Wearable All-Carbon Energy Storage Textiles [J].
Aboutalebi, Seyed Hamed ;
Jalili, Rouhollah ;
Esrafilzadeh, Dorna ;
Salari, Maryam ;
Gholamvand, Zahra ;
Yamini, Sima Aminorroaya ;
Konstantinov, Konstantin ;
Shepherd, Roderick L. ;
Chen, Jun ;
Moulton, Simon E. ;
Innis, Peter Charles ;
Minett, Andrew I. ;
Razal, Joselito M. ;
Wallace, Gordon G. .
ACS NANO, 2014, 8 (03) :2456-2466
[2]   Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J].
Behabtu, Natnael ;
Young, Colin C. ;
Tsentalovich, Dmitri E. ;
Kleinerman, Olga ;
Wang, Xuan ;
Ma, Anson W. K. ;
Bengio, E. Amram ;
ter Waarbeek, Ron F. ;
de Jong, Jorrit J. ;
Hoogerwerf, Ron E. ;
Fairchild, Steven B. ;
Ferguson, John B. ;
Maruyama, Benji ;
Kono, Junichiro ;
Talmon, Yeshayahu ;
Cohen, Yachin ;
Otto, Marcin J. ;
Pasquali, Matteo .
SCIENCE, 2013, 339 (6116) :182-186
[3]   Toward high performance graphene fibers [J].
Chen, Li ;
He, Yuling ;
Chai, Songgang ;
Qiang, Hong ;
Chen, Feng ;
Fu, Qiang .
NANOSCALE, 2013, 5 (13) :5809-5815
[4]   Super-stretchable Graphene Oxide Macroscopic Fibers with Outstanding Knotability Fabricated by Dry Film Scrolling [J].
Cruz-Silva, Rodolfo ;
Morelos-Gomez, Aaron ;
Kim, Hyung-ick ;
Jang, Hong-kyu ;
Tristan, Ferdinando ;
Vega-Diaz, Sofia ;
Rajukumar, Lakshmy P. ;
Elias, Ana Laura ;
Perea-Lopez, Nestor ;
Suhr, Jonghwan ;
Endo, Morinobu ;
Terrones, Mauricio .
ACS NANO, 2014, 8 (06) :5959-5967
[5]   Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers [J].
Dong, Zelin ;
Jiang, Changcheng ;
Cheng, Huhu ;
Zhao, Yang ;
Shi, Gaoquan ;
Jiang, Lan ;
Qu, Liangti .
ADVANCED MATERIALS, 2012, 24 (14) :1856-1861
[6]   An investigation on the stabilization of special polyacrylonitrile nanofibers as carbon or activated carbon nanofiber precursor [J].
Esrafilzadeh, D. ;
Morshed, M. ;
Tavanai, H. .
SYNTHETIC METALS, 2009, 159 (3-4) :267-272
[7]   Nanostructured-coatings of glass fibers:: Improvement of alkali resistance and mechanical properties [J].
Gao, S. L. ;
Maeder, E. ;
Plonka, R. .
ACTA MATERIALIA, 2007, 55 (03) :1043-1052
[8]   Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: Electrospun composite nanofiber sheets [J].
Ge, JJ ;
Hou, HQ ;
Li, Q ;
Graham, MJ ;
Greiner, A ;
Reneker, DH ;
Harris, FW ;
Cheng, SZD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (48) :15754-15761
[9]   Liquid crystal self-templating approach to ultrastrong and tough biomimic composites [J].
Hu, Xiaozhen ;
Xu, Zhen ;
Liu, Zheng ;
Gao, Chao .
SCIENTIFIC REPORTS, 2013, 3
[10]   Elastic Carbon Aerogels Reconstructed from Electrospun Nanofibers and Graphene as Three-Dimensional Networked Matrix for Efficient Energy Storage/Conversion [J].
Huang, Yunpeng ;
Lai, Feili ;
Zhang, Longsheng ;
Lu, Hengyi ;
Miao, Yue-E ;
Liu, Tianxi .
SCIENTIFIC REPORTS, 2016, 6