Invariance of separation in covering approximation spaces

被引:1
作者
Li, Qifang [1 ]
Li, Jinjin [1 ]
Ge, Xun [2 ]
Li, Yiliang [3 ]
机构
[1] Minnan Normal Univ, Sch Math & Stat, Zhangzhou 363000, Fujian, Peoples R China
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
[3] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 06期
基金
中国国家自然科学基金;
关键词
covering approximation space; invariance; separation; reduct; covering approximation subspace; transformation; ROUGH SETS; REDUCTION;
D O I
10.3934/math.2021341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the invariance of separation in covering approximation spaces are discussed. This paper proves that some separations in covering approximation spaces are invariant to reducts of coverings, invariant to covering approximation subspaces and invariant under CAP-transformations of covering approximation spaces. These results deepen and enrich theory of separations in covering approximation spaces, which is helpful to give further researches and applications of Pawlak rough set theory in information sciences.
引用
收藏
页码:5772 / 5785
页数:14
相关论文
共 27 条
[1]  
[Anonymous], 1991, ROUGH SETS THEORETIC
[2]  
Bazan J. G., 1994, Methodologies for Intelligent Systems. 8th International Symposium, ISMIS '94 Proceedings, P346
[3]   Extensions and intentions in the rough set theory [J].
Bonikowski, Z ;
Bryniarski, E ;
Wybraniec-Skardowska, U .
INFORMATION SCIENCES, 1998, 107 (1-4) :149-167
[4]   Separation axioms for generalized topologies [J].
Császár, A .
ACTA MATHEMATICA HUNGARICA, 2004, 104 (1-2) :63-69
[5]  
Engelking R, 1989, GEN TOPOLOGY RREVISE
[6]  
Ge X, 2009, COMPUT SCI J MOLD, V17, P74
[7]   An application of covering approximation spaces on network security [J].
Ge, Xun .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) :1191-1199
[8]   Rough sets applied to the discovery of materials knowledge [J].
Jackson, AG ;
Pawlak, Z ;
LeClair, SR .
JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 279 (01) :14-21
[9]   On the structure of generalized rough sets [J].
Kondo, M .
INFORMATION SCIENCES, 2006, 176 (05) :589-600
[10]   Rough set theory for topological spaces [J].
Lashin, EF ;
Kozae, AM ;
Khadra, AAA ;
Medhat, T .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2005, 40 (1-2) :35-43