Recurrent Neural Network Controllers for Signal Temporal Logic Specifications Subject to Safety Constraints

被引:29
作者
Liu, Wenliang [1 ]
Mehdipour, Noushin [2 ]
Belta, Calin [3 ]
机构
[1] Boston Univ, Dept Mech Engn, Boston, MA 02135 USA
[2] Boston Univ, Dept Syst Engn, Boston, MA 02446 USA
[3] Boston Univ, Dept Mech Syst Engn, Boston, MA 02215 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
关键词
Robustness; Safety; Trajectory; Lead; History; Cost function; Artificial neural networks; Optimal control; neural networks; autonomous systems;
D O I
10.1109/LCSYS.2021.3049917
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a framework based on Recurrent Neural Networks (RNNs) to determine an optimal control strategy for a discrete-time system that is required to satisfy specifications given as Signal Temporal Logic (STL) formulae. RNNs can store information of a system over time, thus, enable us to determine satisfaction of the dynamic temporal requirements specified in STL formulae. Given a STL formula, a dataset of satisfying system executions and corresponding control policies, we can use RNNs to predict a control policy at each time based on the current and previous states of system. We use Control Barrier Functions (CBFs) to guarantee the safety of the predicted control policy. We validate our theoretical formulation and demonstrate its performance in an optimal control problem subject to partially unknown safety constraints through simulations.
引用
收藏
页码:91 / 96
页数:6
相关论文
共 27 条
[1]  
Agrawal A., 2017, ROBOTICS SCI SYSTEMS
[2]  
Aksaray D, 2016, IEEE DECIS CONTR P, P6565, DOI 10.1109/CDC.2016.7799279
[3]  
Ames AD, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P3420, DOI [10.23919/ECC.2019.8796030, 10.23919/ecc.2019.8796030]
[4]  
[Anonymous], 2009, Verification and Control of Hybrid Systems: A Symbolic Approach
[5]  
[Anonymous], 2017, AUTOMATIC DIFFERENTI
[6]   A survey of robot learning from demonstration [J].
Argall, Brenna D. ;
Chernova, Sonia ;
Veloso, Manuela ;
Browning, Brett .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2009, 57 (05) :469-483
[7]  
Balakrishnan A, 2019, IEEE INT C INT ROBOT, P3481, DOI [10.1109/iros40897.2019.8968254, 10.1109/IROS40897.2019.8968254]
[8]  
Belta C, 2017, STUD SYST DECIS CONT, V89, P1, DOI 10.1007/978-3-319-50763-7
[9]   Formal Methods for Control Synthesis: An Optimization Perspective [J].
Belta, Calin ;
Sadraddini, Sadra .
ANNUAL REVIEW OF CONTROL, ROBOTICS, AND AUTONOMOUS SYSTEMS, VOL 2, 2019, 2 :115-140
[10]  
Bertsekas D. P, 1997, J. Oper. Res. Soc., V48, P334, DOI [DOI 10.1057/PALGRAVE.JORS.2600425, 10.1057/palgrave.jors.2600425]