Steady growth of nanowires via the vapor-liquid-solid method

被引:63
作者
Roper, Steven M. [1 ]
Davis, Stephen H. [1 ]
Norris, Scott A. [1 ]
Golovin, Alexander A. [1 ]
Voorhees, Peter W. [1 ]
Weiss, Mark [1 ]
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2761836
中图分类号
O59 [应用物理学];
学科分类号
摘要
Understanding the dynamics of the growth of nanowires by the vapor-liquid-solid (VLS) process is essential in order to relate the properties of the wire to their processing conditions. A theory for VLS growth is developed that incorporates the surface energy of the solid-liquid, liquid-vapor, and solid-vapor interfaces, allows for supersaturation of growth material in the droplet, and employs contact-line conditions. We predict the profile of catalyst concentration in the droplet, the degree of supersaturation, and the modification to the shape of the solid-liquid interface due to growth, as functions of the material properties and process parameters. Under typical experimental conditions the interface deflection due to growth is predicted to be practically zero. We also find that the growth rate of the wire inherits the same dependence on diameter as the flux of growth material at the liquid-vapor interface; thus, if we assume that the flux is independent of radius, we obtain a growth rate that is also independent of radius. To make a prediction about the actual variation with diameter requires a detailed knowledge of the decomposition kinetics at the liquid-vapor interface. (c) 2007 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Vapor-liquid-solid growth of silicon nanowires by chemical vapor deposition on implanted templates
    Christiansen, S.
    Schneider, R.
    Scholz, R.
    Goesele, U.
    Stelzner, Th.
    Andrae, G.
    Wendler, E.
    Wesch, W.
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (08)
  • [42] Selective Epitaxial Growth on Germanium Nanowires via Hybrid Oxide-Stabilized/Vapor-Liquid-Solid Growth
    Hawley, Christopher J.
    McGuckin, Terrence
    Spanier, Jonathan E.
    CRYSTAL GROWTH & DESIGN, 2013, 13 (02) : 491 - 496
  • [43] Kinetics of nanowhisker growth via the vapor-liquid-solid mechanism
    F. N. Borovik
    S. P. Fisenko
    Technical Physics Letters, 2007, 33 : 151 - 153
  • [44] Kinetics of nanowhisker growth via the vapor-liquid-solid mechanism
    Borovik, F. N.
    Fisenko, S. P.
    TECHNICAL PHYSICS LETTERS, 2007, 33 (02) : 151 - 153
  • [45] Synthesis and characterization of carbon-poor SiC nanowires via vapor-liquid-solid growth mechanism
    Guo, ChuChu
    Cheng, Laifei
    Ye, Fang
    Li, Zhaochen
    Xu, Zeshui
    CERAMICS INTERNATIONAL, 2019, 45 (05) : 6440 - 6446
  • [46] The compositional homogeneity of the metal particle during vapor-liquid-solid growth of nanowires
    Johansson, Jonas
    Overgaard, Niels Chr.
    Magnusson, Martin H.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [47] Control of the Thickness and the Length of Germanium-Telluride Nanowires Fabricated via the Vapor-Liquid-Solid Method
    Jung, Soon-Won
    Yoon, Sung-Min
    Park, Young-Sam
    Lee, Seung-Yun
    Yu, Byoung-Gon
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 54 (02) : 653 - 659
  • [48] GROWTH OF SILICON CARBIDE NEEDLES BY THE VAPOR-LIQUID-SOLID METHOD
    BERMAN, I
    RYAN, CE
    JOURNAL OF CRYSTAL GROWTH, 1971, 9 (01) : 314 - &
  • [49] Size effect on Ge nanowires growth kinetics by the vapor-liquid-solid mechanism
    Renard, C.
    Boukhicha, R.
    Gardes, C.
    Fossard, F.
    Yam, V.
    Vincent, L.
    Bouchier, D.
    Hajjar, S.
    Bubendorff, J. L.
    Garreau, G.
    Pirri, C.
    THIN SOLID FILMS, 2012, 520 (08) : 3314 - 3318
  • [50] Simulating Vapor-Liquid-Solid Growth of Au-Seeded InGaAs Nanowires
    Martensson, Erik K.
    Johansson, Jonas
    Dick, Kimberly A.
    ACS NANOSCIENCE AU, 2022, 2 (03): : 239 - 249