Steady growth of nanowires via the vapor-liquid-solid method

被引:63
作者
Roper, Steven M. [1 ]
Davis, Stephen H. [1 ]
Norris, Scott A. [1 ]
Golovin, Alexander A. [1 ]
Voorhees, Peter W. [1 ]
Weiss, Mark [1 ]
机构
[1] Northwestern Univ, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2761836
中图分类号
O59 [应用物理学];
学科分类号
摘要
Understanding the dynamics of the growth of nanowires by the vapor-liquid-solid (VLS) process is essential in order to relate the properties of the wire to their processing conditions. A theory for VLS growth is developed that incorporates the surface energy of the solid-liquid, liquid-vapor, and solid-vapor interfaces, allows for supersaturation of growth material in the droplet, and employs contact-line conditions. We predict the profile of catalyst concentration in the droplet, the degree of supersaturation, and the modification to the shape of the solid-liquid interface due to growth, as functions of the material properties and process parameters. Under typical experimental conditions the interface deflection due to growth is predicted to be practically zero. We also find that the growth rate of the wire inherits the same dependence on diameter as the flux of growth material at the liquid-vapor interface; thus, if we assume that the flux is independent of radius, we obtain a growth rate that is also independent of radius. To make a prediction about the actual variation with diameter requires a detailed knowledge of the decomposition kinetics at the liquid-vapor interface. (c) 2007 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Length distributions of vapor-liquid-solid nanowires
    Berdnikov, Yu.
    Dubrovskii, V. G.
    2018 INTERNATIONAL CONFERENCE LASER OPTICS (ICLO 2018), 2018, : 384 - 384
  • [22] Growth of silicon nanowires via nickel/SiCl4 vapor-liquid-solid reaction
    Wang, NL
    Zhang, YJ
    Zhu, J
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2001, 20 (01) : 89 - 91
  • [23] Oscillations of Truncation in Vapor-Liquid-Solid Nanowires
    Dubrovskii, Vladimir G.
    Glas, Frank
    CRYSTAL GROWTH & DESIGN, 2024, : 9660 - 9672
  • [24] Thermodynamics and kinetics of the growth mechanism of vapor-liquid-solid grown nanowires
    Koto, Makoto
    JOURNAL OF CRYSTAL GROWTH, 2015, 424 : 49 - 54
  • [25] Oscillatory Mass Transport in Vapor-Liquid-Solid Growth of Sapphire Nanowires
    Oh, Sang Ho
    Chisholm, Matthew F.
    Kauffmann, Yaron
    Kaplan, Wayne D.
    Luo, Weidong
    Ruehle, Manfred
    Scheu, Christina
    SCIENCE, 2010, 330 (6003) : 489 - 493
  • [26] Vapor-liquid-solid and vapor-solid growth of self-catalyzed GaAs nanowires
    Ambrosini, S.
    Fanetti, M.
    Grillo, V.
    Franciosi, A.
    Rubini, S.
    AIP ADVANCES, 2011, 1 (04):
  • [27] Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism
    Schmidt, V.
    Senz, S.
    Goesele, U.
    PHYSICAL REVIEW B, 2007, 75 (04)
  • [28] Manipulating the Growth Kinetics of Vapor-Liquid-Solid Propagated Ge Nanowires
    Biswas, Subhajit
    O'Regan, Colm
    Petkov, Nikolay
    Morris, Michael A.
    Holmes, Justin D.
    NANO LETTERS, 2013, 13 (09) : 4044 - 4052
  • [29] Indium and Zinc Oxide Nanowires by Vapor-Liquid-Solid Growth Technique
    Mazouchi, Mojgan
    Purahmad, Mohsen
    Dutta, Mitra
    INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE AND MATERIAL ENGINEERING (MSME 2014), 2014, : 413 - 416
  • [30] Suppression of the vapor-liquid-solid growth of silicon nanowires by antimony addition
    Nimmatoori, Pramod
    Zhang, Qi
    Dickey, Elizabeth C.
    Redwing, Joan M.
    NANOTECHNOLOGY, 2009, 20 (02)