Carbon nanotube fibers with enhanced longitudinal carrier mobility for high-performance all-carbon thermoelectric generators

被引:57
作者
Lee, Taemin [1 ]
Park, Kyung Tae [1 ]
Ku, Bon-Cheol [2 ]
Kim, Heesuk [1 ,3 ]
机构
[1] Korea Inst Sci & Technol, Photoelect Hybrids Res Ctr, Seoul 02792, South Korea
[2] Korea Inst Sci & Technol, Carbon Composite Mat Res Ctr, Inst Adv Composite Mat, Jeollabuk Do 55324, South Korea
[3] Korea Univ Sci & Dchnol UST, Div Energy & Environm Technol, KIST Schoo, Seoul 02792, South Korea
关键词
MACROSCOPIC FIBERS; SINGLE; POLYMER; POWER; CONDUCTIVITY; FABRICATION; COMPOSITES; TRANSPORT; DEVICES; COMPLEX;
D O I
10.1039/c9nr05757a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the increase in practical interest in flexible thermoelectric (TE) generators, the demand for high-performance alternatives to brittle TE materials is growing. Herein, we have demonstrated wet-spun CNT fibers with high TE performance by systematically controlling the longitudinal carrier mobility without a significant change in the carrier concentration. The carrier mobility optimized by CNT alignment increases the electrical conductivity without decreasing the thermopower, thus improving the power factor. On further adjusting the charge carriers via mild annealing, the CNT fibers exhibit a high power factor of 432 mu W m(-1) K-2. Based on the excellent TE performance and shape advantages for modular design of the CNT fiber, the all-carbon based flexible TE generator without an additional metal electrode has been fabricated. The flexible TE generator based on 40 pairs of p- and n-type CNT fibers shows the maximum power density of 15.4 and 259 mu W g(-1) at temperature differences (Delta T) of 5 and 20 K, respectively, currently one of the highest values reported for TE generators based on flexible materials. The strategy proposed here can improve the performance of flexible TE fibers by optimizing the carrier mobility without a change in the carrier concentration, and shows great potential for flexible TE generators.
引用
收藏
页码:16919 / 16927
页数:9
相关论文
共 66 条
[1]   Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives [J].
Aich, Reda Badrou ;
Blouin, Nicolas ;
Bouchard, Angelique ;
Leclerc, Mario .
CHEMISTRY OF MATERIALS, 2009, 21 (04) :751-757
[2]   Thermal transport in MWCNT sheets and yarns [J].
Aliev, Ali E. ;
Guthy, Csaba ;
Zhang, Mei ;
Fang, Shaoli ;
Zakhidov, Anvar A. ;
Fischer, John E. ;
Baughman, Ray H. .
CARBON, 2007, 45 (15) :2880-2888
[3]   Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes [J].
Bati, Abdulaziz S. R. ;
Yu, LePing ;
Batmunkh, Munkhbayar ;
Shapter, Joseph G. .
NANOSCALE, 2018, 10 (47) :22087-22139
[4]   Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity [J].
Behabtu, Natnael ;
Young, Colin C. ;
Tsentalovich, Dmitri E. ;
Kleinerman, Olga ;
Wang, Xuan ;
Ma, Anson W. K. ;
Bengio, E. Amram ;
ter Waarbeek, Ron F. ;
de Jong, Jorrit J. ;
Hoogerwerf, Ron E. ;
Fairchild, Steven B. ;
Ferguson, John B. ;
Maruyama, Benji ;
Kono, Junichiro ;
Talmon, Yeshayahu ;
Cohen, Yachin ;
Otto, Marcin J. ;
Pasquali, Matteo .
SCIENCE, 2013, 339 (6116) :182-186
[5]   Effects of nanotube alignment and measurement direction on percolation resistivity in single-walled carbon nanotube films [J].
Behnam, Ashkan ;
Guo, Jing ;
Ural, Ant .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (04)
[6]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[7]   Carbon-Nanotube-Based Thermoelectric Materials and Devices [J].
Blackburn, Jeffrey L. ;
Ferguson, Andrew J. ;
Cho, Chungyeon ;
Grunlan, Jaime C. .
ADVANCED MATERIALS, 2018, 30 (11)
[8]   Poly(2,7-carbazole)s: Structure-property relationships [J].
Blouin, Nicolas ;
Leclerc, Mario .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (09) :1110-1119
[9]   Enhancement of the Mechanical Properties of Directly Spun CNT Fibers by Chemical Treatment [J].
Boncel, Slawomir ;
Sundaram, Rajyashree M. ;
Windle, Alan H. ;
Koziol, Krzysztof K. K. .
ACS NANO, 2011, 5 (12) :9339-9344
[10]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/nmat3012, 10.1038/NMAT3012]