Nuclear diagnostics for Inertial Confinement Fusion (ICF) plasmas

被引:56
作者
Frenje, J. A. [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
nuclear diagnostics; neutron; gamma-ray; charged particle; plasma; Inertial Confinement Fusion; ICF; TIME-OF-FLIGHT; TARGET IMPLOSION PERFORMANCE; NEUTRON SPECTROMETER; AREAL-DENSITY; RHO-R; CAPSULE IMPLOSIONS; ION TEMPERATURE; CORE CONDITIONS; IGNITION; FUEL;
D O I
10.1088/1361-6587/ab5137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The field of nuclear diagnostics for Inertial Confinement Fusion (ICF) is broadly reviewed from its beginning in the seventies to present day. During this time, the sophistication of the ICF facilities and the suite of nuclear diagnostics have substantially evolved, generally a consequence of the efforts and experience gained on previous facilities. As the fusion yields have increased several orders of magnitude during these years, the quality of the nuclear-fusion-product measurements has improved significantly, facilitating an increased level of understanding about the physics governing the nuclear phase of an ICF implosion. The field of ICF has now entered an era where the fusion yields are high enough for nuclear measurements to provide spatial, temporal and spectral information, which have proven indispensable to understanding the performance of an ICF implosion. At the same time, the requirements on the nuclear diagnostics have also become more stringent. To put these measurements into context, this review starts by providing some historical remarks about the field of ICF and the role of nuclear diagnostics, followed by a brief overview of the basic physics that characterize the nuclear phase and performance of an ICF implosion. A technical discussion is subsequently presented of the neutron, gamma-ray, charged-particle and radiochemistry diagnostics that are, or have been, routinely used in the field of ICF. This discussion is followed by an elaboration of the current view of the next-generation nuclear diagnostics. Since the seventies, the overall progress made in the areas of nuclear diagnostics and scientific understanding of an ICF implosion has been enormous, and with the implementation of new high-fusion-yield facilities world-wide, the next-generation nuclear diagnostics will play an even more important role for decades to come.
引用
收藏
页数:44
相关论文
共 242 条
[21]  
Bock R M, 2007, INERTIAL CONFINEMENT
[22]   RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION [J].
BODNER, SE .
PHYSICAL REVIEW LETTERS, 1974, 33 (13) :761-764
[23]   Initial performance results of the OMEGA laser system [J].
Boehly, TR ;
Brown, DL ;
Craxton, RS ;
Keck, RL ;
Knauer, JP ;
Kelly, JH ;
Kessler, TJ ;
Kumpan, SA ;
Loucks, SJ ;
Letzring, SA ;
Marshall, FJ ;
McCrory, RL ;
Morse, SFB ;
Seka, W ;
Soures, JM ;
Verdon, CP .
OPTICS COMMUNICATIONS, 1997, 133 (1-6) :495-506
[24]   The physics of long- and intermediate-wavelength asymmetries of the hot spot: Compression hydrodynamics and energetics [J].
Bose, A. ;
Betti, R. ;
Shvarts, D. ;
Woo, K. M. .
PHYSICS OF PLASMAS, 2017, 24 (10)
[25]   Charged particle motion in a highly ionized plasma [J].
Brown, LS ;
Preston, DL ;
Singleton, RL .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 410 (04) :237-333
[26]   FUSION NEUTRON ENERGIES AND SPECTRA [J].
BRYSK, H .
PLASMA PHYSICS AND CONTROLLED FUSION, 1973, 15 (07) :611-617
[27]   NEUTRON-SPECTRA FROM INERTIAL CONFINEMENT FUSION-TARGETS FOR MEASUREMENT OF FUEL AREAL DENSITY AND CHARGED-PARTICLE STOPPING POWERS [J].
CABLE, MD ;
HATCHETT, SP .
JOURNAL OF APPLIED PHYSICS, 1987, 62 (06) :2233-2236
[28]   Recent advance in Target Diagnostics on the Laser MegaJoule (LMJ) [J].
Caillaud, T. ;
Alozy, E. ;
Briat, M. ;
Cornet, P. ;
Darbon, S. ;
Diziere, A. ;
Duval, A. ;
Drouet, V. ;
Fariaut, J. ;
Gontier, D. ;
Landoas, O. ;
Marchet, B. ;
Masclet-Gobain, I. ;
Oudot, G. ;
Soullie, G. ;
Stemmler, P. ;
Reverdin, C. ;
Rosch, R. ;
Rousseau, A. ;
Rosse, B. ;
Rubbelynck, C. ;
Troussel, P. ;
Villette, B. ;
Aubard, F. ;
Huelvan, S. ;
Maroni, R. ;
Llavador, P. ;
Allouche, V. ;
Burillo, M. ;
Chollet, C. ;
D'Hose, C. ;
Prat, B. ;
Trosseille, C. ;
Raimbourg, J. ;
Zuber, C. ;
Lebreton, J. P. ;
Perez, S. ;
Ulmer, J. L. ;
Jalinaud, T. ;
Jadaud, J. P. ;
Bourgade, J. L. ;
Wrobel, R. ;
Rogue, X. ;
Miquel, J. L. .
TARGET DIAGNOSTICS PHYSICS AND ENGINEERING FOR INERTIAL CONFINEMENT FUSION V, 2016, 9966
[29]   Development of the large neutron imaging system for inertial confinement fusion experiments [J].
Caillaud, T. ;
Landoas, O. ;
Briat, M. ;
Kime, S. ;
Rosse, B. ;
Thfoin, I. ;
Bourgade, J. L. ;
Disdier, L. ;
Glebov, V. Yu. ;
Marshall, F. J. ;
Sangster, T. C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (03)
[30]   NOVA EXPERIMENTAL FACILITY [J].
CAMPBELL, EM ;
HUNT, JT ;
BLISS, ES ;
SPECK, DR ;
DRAKE, RP .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1986, 57 (08) :2101-2106