Machine learning to predict biochar and bio-oil yields from co-pyrolysis of biomass and plastics

被引:72
|
作者
Alabdrabalnabi, Aessa [1 ]
Gautam, Ribhu [1 ]
Sarathy, S. Mani [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Phys Sci & Engn Div, Thuwal 239556900, Saudi Arabia
关键词
Co-pyrolysis; Biomass; Polymers; Machine learning; Bio-oil; Biochar; WASTE; COMBUSTION; CONVERSION; CHEMICALS; POINT;
D O I
10.1016/j.fuel.2022.125303
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Because of high oxygen content, pH and viscosity, pyrolysis bio-oil is of low quality. Upgrading bio-oil can be achieved by co-pyrolysis of biomass with waste plastics, and it is seen as a promising measure for mitigating waste. In this work, machine learning models were developed to predict yields from the co-pyrolysis of biomass and plastics. Classical machine learning and neural network algorithms were trained with datasets, acquired for biochar and bio-oil yields, with cross-validation and hyperparameters. XGBoost predicted biochar yield with an RMSE of 1.77 and R-2 of 0.96, and the dense neural network was able to predict the bio-oil yield with an RMSE of 2.6 and R-2 of 0.96. The SHapley Additive exPlanations analysis technique was used to understand the influence of various parameters on the yields from co-pyrolysis. This study provides valuable insights to understand the co-pyrolysis of biomass and plastics, and it opens the way for further improvements.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Machine learning to predict the production of bio-oil, biogas, and biochar by pyrolysis of biomass: a review
    Khandelwal, Kapil
    Nanda, Sonil
    Dalai, Ajay K.
    ENVIRONMENTAL CHEMISTRY LETTERS, 2024, 22 (06) : 2669 - 2698
  • [2] A study on machine learning prediction of bio-oil yield from biomass and plastic Co-pyrolysis
    Zhao, Chenxi
    Xia, Qi
    Wang, Siyu
    Lu, Xueying
    Yue, Wenjing
    Chen, Aihui
    Chen, Juhui
    JOURNAL OF THE ENERGY INSTITUTE, 2025, 120
  • [3] Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil
    Dyer, Andrew C.
    Nahil, Mohamad A.
    Williams, Paul T.
    JOURNAL OF THE ENERGY INSTITUTE, 2021, 97 : 27 - 36
  • [4] Co-pyrolysis of lentil husk wastes and Chlorella vulgaris: Bio-oil and biochar yields optimization
    Targhi, Negar Kazemi
    Tavakoli, Omid
    Nazemi, Ali Hekmat
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 165
  • [5] Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: Impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis
    Veksha, Andrei
    Zaman, Waheed
    Layzell, David B.
    Hill, Josephine M.
    BIORESOURCE TECHNOLOGY, 2014, 171 : 88 - 94
  • [6] Yields and characteristics of bio-oil and biochar from fast pyrolysis and co-pyrolysis of oil palm biomass using innovative twin screw reactor for bio-circular-green economy approach
    Kongto, Pumin
    Palamanit, Arkom
    Pattiya, Adisak
    Promsampao, Nuttapan
    Sonsupap, Sathapon
    Phusunti, Neeranuch
    Theapparat, Yongyuth
    Chanakaewsomboon, Issara
    Tippayawong, Nakorn
    BIOMASS CONVERSION AND BIOREFINERY, 2024,
  • [7] Biomass pyrolysis polygeneration with bio-oil recycling: Co-pyrolysis of heavy bio-oil and pine wood leached with light bio-oil for product upgradation
    Cen, Kehui
    Zhuang, Xiaozhuang
    Gan, Ziyu
    Zhang, Hong
    Chen, Dengyu
    FUEL, 2023, 335
  • [8] Enhanced yield and production of aromatics rich fractions in bio-oil through co-pyrolysis of waste biomass and plastics
    Chaturvedi, Ekta
    Roy, Poulomi
    Upadhyay, Rakesh
    Chowdhury, Palash
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2024, 178
  • [9] Co-pyrolysis of light bio-oil leached bamboo and heavy bio-oil: Effects of mass ratio, pyrolysis temperature, and residence time on the biochar
    Chen, Dengyu
    Zhuang, Xiaozhuang
    Gan, Ziyu
    Cen, Kehui
    Ba, Yuping
    Jia, Dongxia
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [10] Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning
    Chen, Xiangmeng
    Shafizadeh, Alireza
    Shahbeik, Hossein
    Nadian, Mohammad Hossein
    Golvirdizadeh, Milad
    Peng, Wanxi
    Lam, Su Shiung
    Tabatabaei, Meisam
    Aghbashlo, Mortaza
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2025, 209