Adaptive multiscale model reduction with Generalized Multiscale Finite Element Methods

被引:163
作者
Chung, Eric [1 ]
Efendiev, Yalchin [2 ]
Hou, Thomas Y. [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[3] CALTECH, Appl & Computat Math 9 94, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
Multiscale; Multiscale finite element method; Heterogeneous media; Porous media; Numerical homogenization; DOMAIN DECOMPOSITION PRECONDITIONERS; ELLIPTIC PROBLEMS; EMPIRICAL INTERPOLATION; FLOW; HOMOGENIZATION;
D O I
10.1016/j.jcp.2016.04.054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we discuss a general multiscale model reduction framework based on multiscale finite element methods. We give a brief overview of related multiscale methods. Due to page limitations, the overview focuses on a few related methods and is not intended to be comprehensive. We present a general adaptive multiscale model reduction framework, the Generalized Multiscale Finite Element Method. Besides the method's basic outline, we discuss some important ingredients needed for the method's success. We also discuss several applications. The proposed method allows performing local model reduction in the presence of high contrast and no scale separation. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 95
页数:27
相关论文
共 68 条
[1]  
Akkutlu I., 2015, ARXIV150700113
[2]  
Akkutlu Y., 2015, TRANSPORT POROUS MED, P1
[3]   Global-local nonlinear model reduction for flows in heterogeneous porous media [J].
Alotaibi, Manal ;
Calo, Victor M. ;
Efendiev, Yalchin ;
Galvis, Juan ;
Ghommem, Mehdi .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 292 :122-137
[4]  
[Anonymous], 1978, ASYMPTOTIC ANAL PERI
[5]   A multiscale mortar mixed finite element method [J].
Arbogast, Todd ;
Pencheva, Gergina ;
Wheeler, Mary F. ;
Yotov, Ivan .
MULTISCALE MODELING & SIMULATION, 2007, 6 (01) :319-346
[6]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[7]   Reduced Basis Techniques for Stochastic Problems [J].
Boyaval, S. ;
Le Bris, C. ;
Lelievre, T. ;
Maday, Y. ;
Nguyen, N. C. ;
Patera, A. T. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2010, 17 (04) :435-454
[8]   A note on variational multiscale methods for high-contrast heterogeneous porous media flows with rough source terms [J].
Calo, Victor ;
Efendiev, Yalchin ;
Galvis, Juan .
ADVANCES IN WATER RESOURCES, 2011, 34 (09) :1177-1185
[9]   Multiscale stabilization for convection-dominated diffusion in heterogeneous media [J].
Calo, Victor M. ;
Chung, Eric T. ;
Efendiev, Yalchin ;
Leung, Wing Tat .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 304 :359-377
[10]   RANDOMIZED OVERSAMPLING FOR GENERALIZED MULTISCALE FINITE ELEMENT METHODS [J].
Calo, Victor M. ;
Efendiev, Yalchin ;
Galvis, Juan ;
Li, Guanglian .
MULTISCALE MODELING & SIMULATION, 2016, 14 (01) :482-501