Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection

被引:150
作者
Hou, Xianbo [1 ]
Mao, Yiqi [2 ]
Zhang, Rubing [1 ,3 ]
Fang, Daining [4 ]
机构
[1] Beijing Jiaotong Univ, Sch Civil Engn, Beijing 100044, Peoples R China
[2] Hunan Univ, Coll Mech & Vehicle Engn, Dept Engn Mech, Changsha 410082, Hunan, Peoples R China
[3] Shenzhen Polytech, Inst Intelligent Mfg Technol, Shenzhen, Peoples R China
[4] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyimide; Aerogel membranes; Flexibility; Thermal protection; MECHANICALLY STRONG; FLAME RESISTANCE; PVDF MEMBRANES; SILICA; ULTRALIGHT; COMPOSITE; STRENGTH; FOAMS;
D O I
10.1016/j.cej.2021.129341
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Experimental preparation of lightweight and highly flexible aerogels has been a longstanding challenge, which limits their practical application in flexible thermal protection. Here, polyimide (PI) nanofiber cross-linked polyimide aerogel membranes were designed to achieve high flexibility, strong mechanical properties, and highly efficient heat-insulated performance. By taking full advantage of the perfect chemical compatibility and robust interfacial bonding strength between PI nanofibers and PI aerogel molecular chains, the PI aerogel membranes achieved the significant transformation from brittleness to high flexibility. The results demonstrate the addition of PI nanofibers exhibits significant reinforcement and toughening effect. PI nanofiber cross-linked PI aerogel membranes possess low density of 0.168 g/cm(3) and low thermal conductivity of 0.0279 W/mK. Moreover, 20 wt% PI nanofiber cross-linked PI aerogel membranes exhibit high tensile strength of 2.95 MPa, while the tensile strength of pure PI aerogel is 0.27 MPa. The as-prepared PI aerogel membrane exhibited hightemperature flexible thermal protection performance, which made it a candidate for the application in modern technology, military, and aerospace.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Cellulose-Silica Nanocomposite Aerogels by In Situ Formation of Silica in Cellulose Gel [J].
Cai, Jie ;
Liu, Shilin ;
Feng, Jiao ;
Kimura, Satoshi ;
Wada, Masahisa ;
Kuga, Shigenori ;
Zhang, Lina .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (09) :2076-2079
[2]   Flexible, low-density polymer crosslinked silica aerogels [J].
Capadona, Lynn A. ;
Meador, Mary Ann B. ;
Alunni, Antonella ;
Fabrizio, Eve F. ;
Vassilaras, Plousia ;
Leventis, Nicholas .
POLYMER, 2006, 47 (16) :5754-5761
[3]   Structural and Functional Fibers [J].
Chang, Huibin ;
Luo, Jeffrey ;
Gulgunje, Prabhakar V. ;
Kumar, Satish .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 47, 2017, 47 :331-359
[4]   Mechanical characterization of single high-strength electrospun polyimide nanofibres [J].
Chen, Fei ;
Peng, Xinwen ;
Li, Tingting ;
Chen, Shuiliang ;
Wu, Xiang-Fa ;
Reneker, Darrell H. ;
hou, Haoqing .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (02)
[5]   Failure analysis and the optimal toughness design of carbon nanotube-reinforced composites [J].
Chen, Y. L. ;
Liu, B. ;
He, X. Q. ;
Huang, Y. ;
Hwang, K. C. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (09) :1360-1367
[6]   A Thermally Insulating Textile Inspired by Polar Bear Hair [J].
Cui, Ying ;
Gong, Huaxin ;
Wang, Yujie ;
Li, Dewen ;
Bai, Hao .
ADVANCED MATERIALS, 2018, 30 (14)
[7]   Electrospun polyimide nanofibers and their applications [J].
Ding, Yichun ;
Hou, Haoqing ;
Zhao, Yong ;
Zhu, Zhengtao ;
Fong, Hao .
PROGRESS IN POLYMER SCIENCE, 2016, 61 :67-103
[8]  
Ebert H.-P., 2011, AEROGELS HDB, P537, DOI [10.1007/978-1-4419-7589-8, DOI 10.1007/978-1-4419-7589-8]
[9]   A review on interface modification and characterization of natural fiber reinforced plastic composites [J].
George, J ;
Sreekala, MS ;
Thomas, S .
POLYMER ENGINEERING AND SCIENCE, 2001, 41 (09) :1471-1485
[10]   Polyimide Aerogels Cross-Linked through Amine Functionalized Polyoligomeric Silsesquioxane [J].
Guo, Haiquan ;
Meador, Mary Ann B. ;
McCorkle, Linda ;
Quade, Derek J. ;
Guo, Jiao ;
Hamilton, Bart ;
Cakmak, Miko ;
Sprowl, Guilherme .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (02) :546-552