共 50 条
Dynamic Impact Surface Damage Analysis of 3D Woven Para-Aramid Armour Panels Using NDI Technique
被引:6
|作者:
Abtew, Mulat Alubel
[1
,2
,3
]
Boussu, Francois
[3
]
Bruniaux, Pascal
[3
]
Hong, Yan
[1
]
机构:
[1] Soochow Univ, Coll Text & Clothing Engn, 178 GJD Rd, Suzhou 215021, Peoples R China
[2] Bahir Dar Univ, Ethiopian Inst Text & Fash Technol, POB 1037, Bahir Dar, Ethiopia
[3] Lille Univ, ENSAIT GEMTEX Lab, 2 Allee Louise & Victor Champier, F-59056 Roubaix, France
来源:
基金:
中国国家自然科学基金;
关键词:
dynamic impact;
nondestructive investigations (NDI);
impact damage;
surface displacement;
protective armour;
3D woven panel;
high-performance para-aramid fibre;
SOFT BODY ARMOR;
BALLISTIC PERFORMANCE;
STRUCTURAL PARAMETERS;
FABRICS;
BEHAVIOR;
COMPOSITES;
ABSORPTION;
RESISTANCE;
THICKNESS;
PATTERN;
D O I:
10.3390/polym13060877
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
The effects of the yarn composition system inside 3D woven high-performance textiles are not well investigated and understood against their final ballistic impact behaviour. The current study aims to examine the ballistic impact performances of armour panels made of different 3D woven fabric variants through postmortem observations. Four high-performance five-layer 3D woven fabric variants were engineered based on their different warp yarn compositions but similar area density. A 50 x 50 cm(2) armour system of each variant, which comprises eight nonbonded but aligned panels, namely, 3D-40-8/0 (or 8/0), 3D-40-8/4 (or 8/4), 3D-40-8/8 (or 8/8) and 3D-40-4/8 (or 4/8), were prepared and moulded to resemble female frontal morphology. The armour systems were then tested with nonperforation ballistic impacts according to the National Institute of Justice (NIJ) 0101.06 standard Level-IIIA. Two high-speed cameras were used to capture the event throughout the test. Nondestructive investigation (NDI) using optical microscopic and stereoscopic 3D digital images were employed for the analysis. The armour panels made of the 8/0 and 4/8 fabric variants were perforated, whereas the armour made of the 8/8 and 8/4 fabric variants showed no perforation. Besides, the armour made of the 8/4 fabric variant revealed higher local and global surface displacements than the other armours. The current research findings are useful for further engineering of 3D woven fabric for seamless women's impact protective clothing.
引用
收藏
页数:21
相关论文