CO2 conversion by plasma: how to get efficient CO2 conversion and high energy efficiency

被引:34
作者
Yin, Yongxiang [1 ]
Yang, Tao [1 ,2 ]
Li, Zhikai [1 ]
Devid, Edwin [3 ,4 ]
Auerbach, Daniel [3 ,5 ]
Kleyn, Aart W. [3 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Panzhihua Univ, Sch Biol & Chem Engn, Panzhihua, Peoples R China
[3] China Acad Engn Phys, Ctr Interface Dynam Sustainabil, Inst Mat, Chengdu 610200, Sichuan, Peoples R China
[4] DIFFER Dutch Inst Fundamental Energy Res, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
[5] Max Planck Inst Biophys Chem, Gottingen, Germany
关键词
CARBON-DIOXIDE; THERMAL PLASMA; BOUDOUARD REACTION; RENEWABLE ENERGY; IN-SITU; METHANE; CH4; FUTURE; FUELS; COMBINATION;
D O I
10.1039/d0cp05275b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conversion of CO2 into CO with plasma processing is a potential method to transform intermittent sustainable electricity into storable chemical energy. The main challenges for developing this technology are how to get efficient CO2 conversion with high energy efficiency and how to prove its feasibility on an industrial scale. In this paper we review the mechanisms and performance of different plasma methodologies used in CO2 conversion. Mindful of the goals of obtaining efficient conversion and high energy efficiency, as well as industrial feasibility in mind, we emphasize a promising new approach of CO2 conversion by using a thermal plasma in combination with a carbon co-reactant.
引用
收藏
页码:7974 / 7987
页数:14
相关论文
共 79 条
[11]   A comprehensive review on PEM water electrolysis [J].
Carmo, Marcelo ;
Fritz, David L. ;
Merge, Juergen ;
Stolten, Detlef .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) :4901-4934
[12]   A novel plasma-assisted hollow fiber membrane concept for efficiently separating oxygen from CO in a CO2 plasma [J].
Chen, Guoxing ;
Buck, Frederic ;
Kistner, Irina ;
Widenmeyer, Marc ;
Schiestel, Thomas ;
Schulz, Andreas ;
Walker, Matthias ;
Weidenkaff, Anke .
CHEMICAL ENGINEERING JOURNAL, 2020, 392
[13]  
Chen Q, 2006, PLASMA SCI TECHNOL, V8, P181, DOI 10.1088/1009-0630/8/2/12
[14]   Review of catalysis and plasma performance on dry reforming of CH4 and possible synergistic effects [J].
Chung, Wei-Chieh ;
Chang, Moo-Been .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 62 :13-31
[15]   Intensified catalytic reactors for Fischer-Tropsch synthesis and for reforming of renewable fuels to hydrogen and synthesis gas [J].
Delparish, Amin ;
Avci, Ahmet K. .
FUEL PROCESSING TECHNOLOGY, 2016, 151 :72-100
[16]   The future of solar fuels: when could they become competitive? [J].
Detz, R. J. ;
Reek, J. N. H. ;
van der Zwaan, B. C. C. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (07) :1653-1669
[17]   Towards a Bioinspired-Systems Approach for Solar Fuel Devices [J].
Detz, Remko J. ;
Sakai, Ken ;
Spiccia, Leone ;
Brudvig, Gary W. ;
Sun, Licheng ;
Reek, Joost N. H. .
CHEMPLUSCHEM, 2016, 81 (10) :1024-1027
[18]  
Devid E, IN PRESS
[19]   Conversion of CO2 by non- thermal inductively-coupled plasma catalysis† [J].
Devid, Edwin ;
Ronda-Lloret, Maria ;
Huang, Qiang ;
Rothenberg, Gadi ;
Shiju, N. Raveendran ;
Kleyn, Aart .
CHINESE JOURNAL OF CHEMICAL PHYSICS, 2020, 33 (02) :243-251
[20]   Dry Reforming of Methane under Mild Conditions Using Radio Frequency Plasma [J].
Devid, Edwin ;
Zhang, Diyu ;
Wang, Dongping ;
Ronda-Lloret, Maria ;
Huang, Qiang ;
Rothenberg, Gadi ;
Shiju, N. Raveendran ;
Kleyn, Aart W. .
ENERGY TECHNOLOGY, 2020, 8 (05)