CO2 conversion by plasma: how to get efficient CO2 conversion and high energy efficiency

被引:34
作者
Yin, Yongxiang [1 ]
Yang, Tao [1 ,2 ]
Li, Zhikai [1 ]
Devid, Edwin [3 ,4 ]
Auerbach, Daniel [3 ,5 ]
Kleyn, Aart W. [3 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Panzhihua Univ, Sch Biol & Chem Engn, Panzhihua, Peoples R China
[3] China Acad Engn Phys, Ctr Interface Dynam Sustainabil, Inst Mat, Chengdu 610200, Sichuan, Peoples R China
[4] DIFFER Dutch Inst Fundamental Energy Res, De Zaale 20, NL-5612 AJ Eindhoven, Netherlands
[5] Max Planck Inst Biophys Chem, Gottingen, Germany
关键词
CARBON-DIOXIDE; THERMAL PLASMA; BOUDOUARD REACTION; RENEWABLE ENERGY; IN-SITU; METHANE; CH4; FUTURE; FUELS; COMBINATION;
D O I
10.1039/d0cp05275b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Conversion of CO2 into CO with plasma processing is a potential method to transform intermittent sustainable electricity into storable chemical energy. The main challenges for developing this technology are how to get efficient CO2 conversion with high energy efficiency and how to prove its feasibility on an industrial scale. In this paper we review the mechanisms and performance of different plasma methodologies used in CO2 conversion. Mindful of the goals of obtaining efficient conversion and high energy efficiency, as well as industrial feasibility in mind, we emphasize a promising new approach of CO2 conversion by using a thermal plasma in combination with a carbon co-reactant.
引用
收藏
页码:7974 / 7987
页数:14
相关论文
共 79 条
[1]   In-Situ Chemical Trapping of Oxygen in the Splitting of Carbon Dioxide by Plasma [J].
Aerts, Robby ;
Snoeckx, Ramses ;
Bogaerts, Annemie .
PLASMA PROCESSES AND POLYMERS, 2014, 11 (10) :985-992
[2]   Towards the electrochemical conversion of carbon dioxide into methanol [J].
Albo, J. ;
Alvarez-Guerra, M. ;
Castano, P. ;
Irabien, A. .
GREEN CHEMISTRY, 2015, 17 (04) :2304-2324
[3]  
Ashford B, 2020, APPL CATAL B-ENVIRON, V276, P10
[4]   Non-thermal plasma technology for the conversion of CO2 [J].
Ashford, Bryony ;
Tu, Xin .
CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2017, 3 :45-49
[5]   New concept for energy storage: Microwave-induced carbon gasification with CO2 [J].
Bermudez, J. M. ;
Ruisanchez, E. ;
Arenillas, A. ;
Moreno, A. H. ;
Menendez, J. A. .
ENERGY CONVERSION AND MANAGEMENT, 2014, 78 :559-564
[6]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[7]   CALIBRATION OF AN ARGON PLASMA JET AND PRELIMINARY APPLICATION TO PRODUCTION OF OXYGEN BY CARBON DIOXIDE REDUCTION [J].
BLANCHET, JL ;
PARENT, JR ;
LAVALLEE, HC .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1969, 47 (02) :160-&
[8]   Plasma Technology for CO2 Conversion: A Personal Perspective on Prospects and Gaps [J].
Bogaerts, Annemie ;
Centi, Gabriele .
FRONTIERS IN ENERGY RESEARCH, 2020, 8
[9]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[10]   Plasma-based conversion of CO2: current status and future challenges [J].
Bogaerts, Annemie ;
Kozak, Tomas ;
van Laer, Koen ;
Snoeckx, Ramses .
FARADAY DISCUSSIONS, 2015, 183 :217-232