Non destructive Eddy Currents inversion using Artificial Neural Networks and data augmentation

被引:13
作者
Cormerais, R. [1 ,2 ,3 ]
Longo, Roberto [2 ,3 ,4 ]
Duclos, A. [3 ]
Wasselynck, G. [1 ]
Berthiau, G. [1 ]
机构
[1] Inst Rech Energie Elect Nantes Atlantiques IREENA, 37 Blvd Univ, Saint Nazaire, France
[2] Ecole Super Elect Ouest ESEO, Grp Signal Image & Instrumentat GSII, 10 Blvd Jean Jeanneteau, Angers, France
[3] Le Mans Univ, Lab Acoust Univ Mans LAUM, Inst Acoust, Grad Sch IA GS,CNRS,UMR 6613, F-72085 Le Mans, France
[4] Ecole Super Elect Ouest ESEO, 10 Blvd Jean Jeanneteau, F-49107 Angers, France
关键词
Eddy currents testing; Artificial neural network; Data augmentation; Principal component analysis; DESIGN; CRACKS; INTERPOLATION; SIMULATION; ALGORITHM; SYSTEMS; MODEL; PROBE;
D O I
10.1016/j.ndteint.2022.102635
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Eddy Currents (ECs) for Non Destructive Testing (NDT) is a method to determine the presence of flaws in metal materials. The estimation of flaw parameters like position and size through physical models is usually difficult. This article offers an alternative technique based on machine learning algorithms such as Artificial Neural Networks (ANNs). This approach often requires simulated signals to build an exhaustive training data-set, leading to a considerable amount of calculation time and resources. To deal with this problem, this article proposes a new method based on data augmentation via Principal Component Analysis (PCA). The presented method is evaluated using different kinds of simulated and experimental signals.
引用
收藏
页数:8
相关论文
共 49 条
[1]   An adaptive sampling strategy for quasi real time crack characterization on eddy current testing signals [J].
Ahmed, Shamim ;
Reboud, Christophe ;
Lhuillier, Pierre-Emile ;
Calmon, Pierre ;
Miorelli, Roberto .
NDT & E INTERNATIONAL, 2019, 103 :154-165
[2]   Real Time Flaw Detection and Characterization in Tube through Partial Least Squares and SVR: Application to Eddy Current Testing [J].
Ahmed, Shamim ;
Miorelli, Roberto ;
Calmon, Pierre ;
Anselmi, Nicola ;
Salucci, Marco .
44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOL 37, 2018, 1949
[4]   Model-based Probe State Estimation and Crack Inverse Methods Addressing Eddy Current Probe Variability [J].
Aldrin, John C. ;
Oneida, Erin K. ;
Shell, Eric B. ;
Sabbagh, Harold A. ;
Sabbagh, Elias ;
Murphy, R. Kim ;
Mazdiyasni, Siamack ;
Lindgren, Eric A. ;
Mooers, Ryan D. .
43RD REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, 2017, 1806
[5]  
Alonso A., 2010, EDDY CURRENT APPROXI
[6]   Scattered data interpolation methods for electronic imaging systems: a survey [J].
Amidror, I .
JOURNAL OF ELECTRONIC IMAGING, 2002, 11 (02) :157-176
[7]   Dimension Estimation of Rectangular Cracks Using Impedance Changes of the Eddy Current Probe with a Neural Network [J].
Babaei, A. ;
Suratgar, A. A. ;
Salemi, A. H. .
JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2013, 11 :397-401
[8]   Learning Deep Architectures for AI [J].
Bengio, Yoshua .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2009, 2 (01) :1-127
[9]   An innovative real-time technique for buried object detection [J].
Bermani, E ;
Boni, A ;
Caorsi, S ;
Massa, A .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (04) :927-931
[10]   Crack shape reconstruction in eddy current testing using machine learning systems for regression [J].
Bernieri, Andrea ;
Ferrigno, Luigi ;
Laracca, Marco ;
Molinara, Mario .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2008, 57 (09) :1958-1968