Liouvelle-type theorems and Harnack-type inequalities for semilinear elliptic equations

被引:207
作者
Li, YY [1 ]
Zhang, L [1 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2003年 / 90卷 / 1期
关键词
D O I
10.1007/BF02786551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:27 / 87
页数:61
相关论文
共 63 条
[1]  
[Anonymous], 1994, DIFFERENTIAL INTEGRA
[2]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO
[3]  
2-6
[4]   TRAVELING FRONTS IN CYLINDERS [J].
BERESTYCKI, H ;
NIRENBERG, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05) :497-572
[5]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[6]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[7]  
Berestycki H., 1990, Analysis, et Cetera, P115
[8]  
Berestycki H., 1988, J. Geom. Phys., V5
[9]  
Berestycki H., 1991, Bol Soc Brasileira Mat, V22, P1, DOI DOI 10.1007/BF01244896
[10]  
Berestycki H., 1993, BOUND VALUE PROBL PA, V29, P27