Oracle inequalities and upper bounds for kernel density estimators on manifolds and more general metric spaces

被引:9
作者
Cleanthous, Galatia [1 ]
Georgiadis, Athanasios G. [2 ]
Porcu, Emilio [3 ]
机构
[1] Natl Univ Ireland, Maynooth, Kildare, Ireland
[2] Univ Dublin, Trinity Coll Dublin, Dublin, Ireland
[3] Khalifa Univ, Abu Dhabi, U Arab Emirates
关键词
Approximation error; kernel density estimators; metric spaces; oracle inequalities; smoothness spaces; DISTRIBUTIONS;
D O I
10.1080/10485252.2022.2070162
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove oracle inequalities and upper bounds for kernel density estimators on a very broad class of metric spaces. Precisely we consider the setting of a doubling measure metric space in the presence of a non-negative self-adjoint operator whose heat kernel enjoys Gaussian regularity. Many classical settings like Euclidean spaces, spheres, balls, cubes as well as general Riemannian manifolds, are contained in our framework. Moreover the rate of convergence we achieve is the optimal one in these special cases. Finally we provide the general methodology of constructing the proper kernels when the manifold under study is given and we give precise examples for the case of the sphere.
引用
收藏
页码:734 / 757
页数:24
相关论文
共 40 条
[1]  
[Anonymous], METHODS MODERN MATH, DOI DOI 10.1016/B978-0-12-241950-8.50008-3
[2]  
[Anonymous], 2011, Random fields on the sphere: representation, limit theorems and cosmological applications
[3]  
[Anonymous], 1978, Functional Analysis
[4]  
[Anonymous], 2013, Springer Monographs in Mathematics
[5]   ADAPTIVE DENSITY ESTIMATION FOR DIRECTIONAL DATA USING NEEDLETS [J].
Baldi, P. ;
Kerkyacharian, G. ;
Marinucci, D. ;
Picard, D. .
ANNALS OF STATISTICS, 2009, 37 (6A) :3362-3395
[6]  
Bretagnolle I., 1979, Zeitschrift fur Wahrscheinlichkeitstheorie und verwandte Gebiete, V47, P119
[7]   Thomas Bayes' walk on manifolds [J].
Castillo, Ismael ;
Kerkyacharian, Gerard ;
Picard, Dominique .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 158 (3-4) :665-710
[8]   Kernel and wavelet density estimators on manifolds and more general metric spaces [J].
Cleanthous, Galatia ;
Georgiadis, Athanasios G. ;
Kerkyacharian, Gerard ;
Petrushev, Pencho ;
Picard, Dominique .
BERNOULLI, 2020, 26 (03) :1832-1862
[9]   Heat Kernel Generated Frames in the Setting of Dirichlet Spaces [J].
Coulhon, T. ;
Kerkyacharian, G. ;
Petrushev, P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (05) :995-1066
[10]  
Devroye L, 1996, ANN STAT, V24, P2499