Langlands correspondence and L-functions of symmetric and outside squares

被引:48
|
作者
Henniart, Guy [1 ,2 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] CNRS, UMR 8628, F-91405 Orsay, France
关键词
CONJECTURE; GL(N); PROOF;
D O I
10.1093/imrn/rnp150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number, F a finite extension of Qp and ψ a non trivial additive character of F. The Langlands correspondence is a bijection σ π (σ) between Φ-semisimple degree n representations of the Weil-Deligne group of F, up to isomorphism, and smooth irreducible representations of, up to isomorphism. For some representations r of the dual group of, local-global methods attach factors L(π, r, s) and ε (π, r, s, ψ) to any smooth irreducible representation π of. Conjecturally we have L(π (σ), r, s) = L (r ○ σ, s), and similarly for the ε-factors, when σ is a degree n representation of the Weil-Deligne group of F. © The Author 2009. Published by Oxford University Press. All rights reserved.
引用
收藏
页码:633 / 673
页数:41
相关论文
共 50 条
  • [31] POLES OF L-FUNCTIONS AND THETA LIFTINGS FOR ORTHOGONAL GROUPS
    Ginzburg, David
    Jiang, Dihua
    Soudry, David
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2009, 8 (04) : 693 - 741
  • [32] ON THE LOCAL AND GLOBAL EXTERIOR SQUARE L-FUNCTIONS OF GLn
    Kewat, Pramod Kumar
    Raghunathan, Ravi
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (04) : 785 - 804
  • [33] On the exceptional zeros of Rankin-Selberg L-functions
    Ramakrishnan, D
    Wang, S
    COMPOSITIO MATHEMATICA, 2003, 135 (02) : 211 - 244
  • [34] SELMER GROUPS AND CENTRAL VALUES OF L-FUNCTIONS FOR MODULAR FORMS
    Chida, Masataka
    ANNALES DE L INSTITUT FOURIER, 2017, 67 (03) : 1231 - 1276
  • [35] HECKE L-FUNCTIONS AND FOURIER COEFFICIENTS OF COVERING EISENSTEIN SERIES
    Gao, Fan
    DOCUMENTA MATHEMATICA, 2021, 26 : 465 - 522
  • [36] Godement-Jacquet L-functions and full theta lifts
    Fang, Yingjue
    Sun, Binyong
    Xue, Huajian
    MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (1-2) : 593 - 604
  • [37] On Li's coefficients for the Rankin-Selberg L-functions
    Odzak, Almasa
    Smajlovic, Lejla
    RAMANUJAN JOURNAL, 2010, 21 (03) : 303 - 334
  • [38] The prime number theorem in short intervals for automorphic L-functions
    Qu, Y.
    Wu, J.
    ACTA ARITHMETICA, 2012, 154 (01) : 45 - 59
  • [39] L-functions for Quadratic Characters and Annihilation of Motivic Cohomology Groups
    Sands, Jonathan W.
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03): : 620 - 631
  • [40] Nonvanishing of L-functions, the Ramanujan Conjecture, and Families of Hecke Characters
    Blomer, Valentin
    Brumley, Farrell
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2013, 65 (01): : 22 - 51