Langlands correspondence and L-functions of symmetric and outside squares

被引:48
作者
Henniart, Guy [1 ,2 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] CNRS, UMR 8628, F-91405 Orsay, France
关键词
CONJECTURE; GL(N); PROOF;
D O I
10.1093/imrn/rnp150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime number, F a finite extension of Qp and ψ a non trivial additive character of F. The Langlands correspondence is a bijection σ π (σ) between Φ-semisimple degree n representations of the Weil-Deligne group of F, up to isomorphism, and smooth irreducible representations of, up to isomorphism. For some representations r of the dual group of, local-global methods attach factors L(π, r, s) and ε (π, r, s, ψ) to any smooth irreducible representation π of. Conjecturally we have L(π (σ), r, s) = L (r ○ σ, s), and similarly for the ε-factors, when σ is a degree n representation of the Weil-Deligne group of F. © The Author 2009. Published by Oxford University Press. All rights reserved.
引用
收藏
页码:633 / 673
页数:41
相关论文
共 35 条
[1]   Generic transfer for general spin groups [J].
Asgari, M ;
Shahidi, F .
DUKE MATHEMATICAL JOURNAL, 2006, 132 (01) :137-190
[2]   Local L-functions for split spinor groups [J].
Asgari, M .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (04) :673-693
[3]  
ASGARI M, 2007, ARXIVMATH07124315
[4]  
Borel A., 1979, Proc. Symp. Pure Math, VXXXIII, P27
[5]  
CARTIER P., 1979, AUTOMORPHIC FORMS RE, V33.1, P111
[6]   Stability of γ-factors for quasi-split groups [J].
Cogdell, J. W. ;
Piatetski-Shapiro, I. I. ;
Shahidi, F. .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (01) :27-66
[7]   Stability of gamma factors for SO(2n+1) [J].
Cogdell, JW ;
Piatetski-Shapiro, II .
MANUSCRIPTA MATHEMATICA, 1998, 95 (04) :437-461
[8]   TORSIONAL VARIATION OF LOCAL CONSTANTS OF FUNCTIONAL-EQUATIONS OF L-FUNCTIONS [J].
DELIGNE, P ;
HENNIART, G .
INVENTIONES MATHEMATICAE, 1981, 64 (01) :89-118
[9]  
Deligne P., 1973, Lecture Notes in Math., V349, P501
[10]   The local Langlands conjecture for GL(n) over a p-adic field, n<p [J].
Harris, M .
INVENTIONES MATHEMATICAE, 1998, 134 (01) :177-210