High-spatial-resolution x-ray fluorescence tomography with spectrally matched nanoparticles

被引:42
作者
Larsson, Jakob C. [1 ]
Vogt, Carmen [1 ]
Vagberg, William [1 ]
Toprak, Muhammet S. [1 ]
Dzieran, Johanna [2 ]
Arsenian-Henriksson, Marie [2 ]
Hertz, Hans M. [1 ]
机构
[1] KTH Royal Inst Technol, Albanova, Dept Appl Phys, S-10691 Stockholm, Sweden
[2] Karolinska Inst, Dept Microbiol Tumor & Cell Biol MTC, S-17177 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
x-ray fluorescence tomography; small-animal biomedical imaging; nanoparticles; COMPUTED-TOMOGRAPHY; GOLD NANOPARTICLES; MAGNETIC NANOPARTICLES; MICRO-CT; BLOOD; XFCT;
D O I
10.1088/1361-6560/aad51e
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Present macroscopic biomedical imaging methods provide either morphology with high spatial resolution (e.g. CT) or functional/molecular information with lower resolution (e.g. PET). X-ray fluorescence (XRF) from targeted nanoparticles allows molecular or functional imaging but sensitivity has so far been insufficient resulting in low spatial resolution, despite long exposure times and high dose. In the present paper, we show that laboratory XRF tomography with metal-core nanoparticles (NPs) provides a path to functional/molecular biomedical imaging with similar to 100 mu m resolution in living rodents. The high sensitivity and resolution rely on the combination of a high-brightness liquid-metal-jet x-ray source, pencil-beam optics, photon-counting energy-dispersive detection, and spectrally matched NPs. The method is demonstrated on mice for 3D tumor imaging via passive targeting of in-house-fabricated molybdenum NPs. Exposure times, nanoparticle dose, and radiation dose agree well with in vivo imaging.
引用
收藏
页数:11
相关论文
共 41 条
  • [1] Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT)
    Ahmad, Moiz
    Bazalova-Carter, Magdalena
    Fahrig, Rebecca
    Xing, Lei
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (05) : 1140 - 1147
  • [2] X-Ray Luminescence and X-Ray Fluorescence Computed Tomography: New Molecular Imaging Modalities
    Ahmad, Moiz
    Pratx, Guillem
    Bazalova, Magdalena
    Xing, Lei
    [J]. IEEE ACCESS, 2014, 2 : 1051 - 1061
  • [3] In vivo small-animal imaging using micro-CT and digital subtraction angiography
    Badea, C. T.
    Drangova, M.
    Holdsworth, D. W.
    Johnson, G. A.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (19) : R319 - R350
  • [4] Investigation of X-ray Fluorescence Computed Tomography (XFCT) and K-Edge Imaging
    Bazalova, Magdalena
    Kuang, Yu
    Pratx, Guillem
    Xing, Lei
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (08) : 1620 - 1627
  • [5] Berger M., 2019, Xcom: Photon cross section database, DOI [DOI 10.18434/T48G6X, 10.18434/T48G6X]
  • [6] Principles of nanoparticle design for overcoming biological barriers to drug delivery
    Blanco, Elvin
    Shen, Haifa
    Ferrari, Mauro
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (09) : 941 - 951
  • [7] Buhler V., 2005, Polyvinylpyrrolidone Excipients for Pharmaceuticals
  • [8] Bushberg J. T., 2002, Essential Physics of Medical Imaging
  • [9] Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities
    Cheng, Zhiliang
    Al Zaki, Ajlan
    Hui, James Z.
    Muzykantov, Vladimir R.
    Tsourkas, Andrew
    [J]. SCIENCE, 2012, 338 (6109) : 903 - 910
  • [10] X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110 kVp x-rays
    Cheong, Seong-Kyun
    Jones, Bernard L.
    Siddiqi, Arsalan K.
    Liu, Fang
    Manohar, Nivedh
    Cho, Sang Hyun
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (03) : 647 - 662