Generalized ε-quasi-solutions in multiobjective optimization problems: Existence results and optimality conditions

被引:31
作者
Gutierrez, C. [2 ]
Lopez, R. [3 ]
Novo, V. [1 ]
机构
[1] Univ Nacl Educ Distancia, ETSI Ind, Dept Matemat Aplicada, E-28040 Madrid, Spain
[2] Univ Valladolid, Dept Matemat Aplicada, ETSI Informat, E-47011 Valladolid, Spain
[3] Univ Catolica Ssma Concepcion, Fac Ingn, Dept Matemat & Fis Aplicadas, Concepcion, Chile
关键词
Multiobjective optimization; epsilon-efficiency; Existence theorems; Asymptotic analysis; Optimality conditions; Nonsmooth analysis; Clarke's derivative; Ekeland's variational principle; EKELANDS VARIATIONAL PRINCIPLE; VECTOR OPTIMIZATION; APPROXIMATE SOLUTIONS; EFFICIENT POINTS; BANACH-SPACES; SET; MINIMIZERS; STABILITY; MAPPINGS; DUALITY;
D O I
10.1016/j.na.2010.02.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with approximate solutions of multiobjective optimization problems whose order cone is not necessarily the nonnegative orthant. We introduce the concept of generalized epsilon-quasi-solution, that extends other well-known approximate efficiency notions of the literature, and we study the limit behavior of these solutions as approximations to the efficient and weak efficient sets. Moreover, we prove several existence results and a bound for the generalized epsilon-quasi-solution set under convexity assumptions and by using asymptotic analysis tools. Finally, we develop optimality conditions for a particular case of these kinds of epsilon-quasi-solutions in nonsmooth convex and nonconvex problems. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4331 / 4346
页数:16
相关论文
共 48 条
[1]  
[Anonymous], 1992, J GLOBAL OPTIM, DOI DOI 10.1007/BF00122049
[2]  
[Anonymous], 1998, Variational Analysis
[3]  
[Anonymous], 1990, OPTIMIZATION NONSMOO
[4]   STABILITY RESULTS FOR EKELAND EPSILON-VARIATIONAL PRINCIPLE AND CONE EXTREMAL SOLUTIONS [J].
ATTOUCH, H ;
RIAHI, H .
MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (01) :173-201
[5]  
Bao TQ, 2007, CONTROL CYBERN, V36, P531
[6]   Relative Pareto minimizers for multiobjective problems: existence and optimality conditions [J].
Bao, Truong Q. ;
Mordukhovich, Boris S. .
MATHEMATICAL PROGRAMMING, 2010, 122 (02) :301-347
[7]   An extension of Ekeland's variational principle to locally complete spaces [J].
Bosch, C. ;
Garcia, A. ;
Garcia, C. L. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (01) :106-108
[8]  
BREZIS H, 1984, TEORIA APLICACIONES
[9]  
Chen GY, 2005, LECT NOTES ECON MATH, V541, P1, DOI 10.1007/3-540-28445-1
[10]  
Combari C., 1994, ANN SCI MATH QUEBEC, V18, P119