Aggregation-Dependent Photoluminescence Sidebands in Single-Walled Carbon Nanotube

被引:11
|
作者
Wei, Li [1 ]
Li, Lain-Jong [2 ]
Chan-Park, Mary B. [1 ]
Yang, Yanhui [1 ]
Chen, Yuan [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
[2] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2010年 / 114卷 / 14期
基金
新加坡国家研究基金会;
关键词
FLUORESCENCE; DISPERSIONS; DERIVATIVES; SUSPENSIONS; PROTONATION; RESONANCES; EXTRACTION; CHEMISTRY; CATALYST; COBALT;
D O I
10.1021/jp910916a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aggregation of single-walled carbon nanotubes (SWCNTs) is one of the major obstacles for many nanotube fundamental studies and practical applications. such as nanocomposites, electronic devices, bioimaging, biosensors, and drug-delivery. In this study, two types of SWCNT samples, enriched with (6,5) and (7,5) chiral structures, respectively, were investigated SWCNT suspensions containing various fractions of bundles were obtained by ultracentrifugation Dialysis was used to achieve the controlled nanotube rebundling. Results showed that SWCNT photoluminescence (PL) sidebands (the transverse sideband E-12.21, the phonon coupled sidebands E-22 + G,G', and the E-33 -> E-11 emission band) are dependent on the nanotube aggregation We proposed that SWCNT exciton relaxation routes increase upon nanotube aggregation, resulting in the suppression or primary PL peaks and the enhancement of PL sidebands. Furthermore, the correlation between PL sidebands and nanotube aggregation was also demonstrated in diverse dispersion conditions involving different surfactants and solvents. These results highlight the potential of employing PL sidebands as a sensitive characterizing tool to monitor the nanotube aggregation under different circumstances
引用
收藏
页码:6704 / 6711
页数:8
相关论文
共 50 条
  • [21] Resonance analysis of a single-walled carbon nanotube
    Wang, Zhen
    Hu, Weipeng
    CHAOS SOLITONS & FRACTALS, 2021, 142
  • [22] Micropatterning of single-walled carbon nanotube forest
    Mousinho, A. P.
    Mansano, R. D.
    PROGRESS IN ORGANIC COATINGS, 2011, 70 (04) : 326 - 329
  • [23] Delivery of Capecitabine by Single-Walled Carbon Nanotube
    Amini, Saeed K.
    JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY, 2021, 20 (05): : 449 - 463
  • [24] Single-walled carbon nanotube as an effective quencher
    Zhi Zhu
    Ronghua Yang
    Mingxu You
    Xiaoling Zhang
    Yanrong Wu
    Weihong Tan
    Analytical and Bioanalytical Chemistry, 2010, 396 : 73 - 83
  • [25] Single-walled carbon nanotube - amylopectin complexes
    Stobinski, L
    Tomasik, P
    Lii, CY
    Chan, HH
    Lin, HM
    Liu, HL
    Kao, CT
    Lu, KS
    CARBOHYDRATE POLYMERS, 2003, 51 (03) : 311 - 316
  • [26] Chaos in an embedded single-walled carbon nanotube
    Weipeng Hu
    Zichen Deng
    Bo Wang
    Huajiang Ouyang
    Nonlinear Dynamics, 2013, 72 : 389 - 398
  • [27] Exciton distribution on single-walled carbon nanotube
    Lue, Y.
    Liu, H.
    Gu, B.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 74 (04): : 499 - 506
  • [28] Twisting of single-walled carbon nanotube bundles
    Qin, LC
    Iijima, S
    AMORPHOUS AND NANOSTRUCTURED CARBON, 2000, 593 : 33 - 38
  • [29] Single-walled carbon nanotube network ultramicroelectrodes
    Dumitrescu, Ioana
    Unwin, Patrick R.
    Wilson, Neil R.
    Macpherson, Julie V.
    ANALYTICAL CHEMISTRY, 2008, 80 (10) : 3598 - 3605
  • [30] Single-walled carbon nanotube as an effective quencher
    Zhu, Zhi
    Yang, Ronghua
    You, Mingxu
    Zhang, Xiaoling
    Wu, Yanrong
    Tan, Weihong
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 396 (01) : 73 - 83