Combining multiple anatomical MRI measures improves Alzheimer's disease classification

被引:51
|
作者
de Vos, Frank [1 ,2 ,3 ]
Schouten, Tijn M. [1 ,2 ,3 ]
Hafkemeijer, Anne [1 ,2 ,3 ]
Dopper, Elise G. P. [2 ,4 ,5 ]
van Swieten, John C. [4 ,6 ]
de Rooij, Mark [1 ,3 ]
van der Grond, Jeroen [2 ]
Rombouts, Serge A. R. B. [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Psychol, Wassenaarseweg 52, NL-2333 AK Leiden, Netherlands
[2] Leiden Univ, Dept Radiol, Med Ctr, Leiden, Netherlands
[3] Leiden Inst Brain & Cognit, Leiden, Netherlands
[4] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
[5] Vrije Univ Amsterdam Med Ctr, Dept Neurol, Amsterdam, Netherlands
[6] Vrije Univ Amsterdam Med Ctr, Dept Clin Genet, Amsterdam, Netherlands
关键词
Alzheimer's disease; anatomical MRI; cortical thickness; cortical area; cortical curvature; grey matter density; subcortical volumes; hippocampal shape; classification; MILD COGNITIVE IMPAIRMENT; VOXEL-BASED MORPHOMETRY; GRAY-MATTER LOSS; SURFACE-BASED ANALYSIS; CORTICAL THICKNESS; STRUCTURAL MRI; HIPPOCAMPAL; DIAGNOSIS; ATROPHY; SEGMENTATION;
D O I
10.1002/hbm.23147
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Several anatomical MRI markers for Alzheimer's disease (AD) have been identified. Hippocampal volume, cortical thickness, and grey matter density have been used successfully to discriminate AD patients from controls. These anatomical MRI measures have so far mainly been used separately. The full potential of anatomical MRI scans for AD diagnosis might thus not yet have been used optimally. In this study, we therefore combined multiple anatomical MRI measures to improve diagnostic classification of AD. For 21 clinically diagnosed AD patients and 21 cognitively normal controls, we calculated (i) cortical thickness, (ii) cortical area, (iii) cortical curvature, (iv) grey matter density, (v) subcortical volumes, and (vi) hippocampal shape. These six measures were used separately and combined as predictors in an elastic net logistic regression. We made receiver operating curve plots and calculated the area under the curve (AUC) to determine classification performance. AUC values for the single measures ranged from 0.67 (cortical thickness) to 0.94 (grey matter density). The combination of all six measures resulted in an AUC of 0.98. Our results demonstrate that the different anatomical MRI measures contain complementary information. A combination of these measures may therefore improve accuracy of AD diagnosis in clinical practice. Hum Brain Mapp 37:1920-1929, 2016. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1920 / 1929
页数:10
相关论文
共 50 条
  • [41] Evolutionary ELM wrapper feature selection for Alzheimer's disease CAD on anatomical brain MRI
    Chyzhyk, Darya
    Savio, Alexandre
    Grana, Manuel
    NEUROCOMPUTING, 2014, 128 : 73 - 80
  • [42] Combinatorial Markers of Mild Cognitive Impairment Conversion to Alzheimer's Disease - Cytokines and MRI Measures Together Predict Disease Progression
    Furney, Simon J.
    Kronenberg, Deborah
    Simmons, Andrew
    Guentert, Andreas
    Dobson, Richard J.
    Proitsi, Petroula
    Wahlund, Lars Olof
    Kloszewska, Iwona
    Mecocci, Patrizia
    Soininen, Hilkka
    Tsolaki, Magda
    Vellas, Bruno
    Spenger, Christian
    Lovestone, Simon
    JOURNAL OF ALZHEIMERS DISEASE, 2011, 26 : 395 - 405
  • [43] Clinical applicability of quantitative atrophy measures on MRI in patients suspected of Alzheimer's disease
    Ingala, Silvia
    van Maurik, Ingrid S.
    Altomare, Daniele
    Wurm, Raphael
    Dicks, Ellen
    van Schijndel, Ronald A.
    Zwan, Marissa
    Bouwman, Femke
    Schoonenboom, Niki
    Boelaarts, Leo
    Roks, Gerwin
    van Marum, Rob
    van Harten, Barbera
    van Uden, Inge
    Claus, Jules
    Wottschel, Viktor
    Vrenken, Hugo
    Wattjes, Mike P.
    van der Flier, Wiesje M.
    Barkhof, Frederik
    EUROPEAN RADIOLOGY, 2022, 32 (11) : 7789 - 7799
  • [44] 3D texture analysis on MRI images of Alzheimer's disease
    Zhang, Jing
    Yu, Chunshui
    Jiang, Guilian
    Liu, Weifang
    Tong, Longzheng
    BRAIN IMAGING AND BEHAVIOR, 2012, 6 (01) : 61 - 69
  • [45] Combining short interval MRI in Alzheimer's disease
    Schott, J. M.
    Frost, C.
    Whitwell, J. L.
    MacManus, D. G.
    Boyes, R. G.
    Rossor, M. N.
    Fox, N. C.
    JOURNAL OF NEUROLOGY, 2006, 253 (09) : 1147 - 1153
  • [46] Classification of Alzheimer's Disease Based on Multiple Anatomical Structures' Asymmetric Magnetic Resonance Imaging Feature Selection
    Li, Yongming
    Yan, Jin
    Wang, Pin
    Lv, Yang
    Qiu, Mingguo
    He, Xuan
    NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 280 - 289
  • [47] Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI
    Benoît Magnin
    Lilia Mesrob
    Serge Kinkingnéhun
    Mélanie Pélégrini-Issac
    Olivier Colliot
    Marie Sarazin
    Bruno Dubois
    Stéphane Lehéricy
    Habib Benali
    Neuroradiology, 2009, 51 : 73 - 83
  • [48] Combining Polygenic Hazard Score With Volumetric MRI and Cognitive Measures Improves Prediction of Progression From Mild Cognitive Impairment to Alzheimer's Disease
    Kauppi, Karolina
    Fan, Chun Chieh
    McEvoy, Linda K.
    Holland, Dominic
    Tan, Chin Hong
    Chen, Chi-Hua
    Andreassen, Ole A.
    Desikan, Rahul S.
    Dale, Anders M.
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [49] Predictive Modeling Of Alzheimer's Disease Prognosis Using Anatomical & Diffusion MRI
    Goel, Nikita
    Thomopoulos, Sophia, I
    Chattopadhyay, Tamoghna
    Thompson, Paul M.
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [50] Classification of Alzheimer's disease subjects from MRI using hippocampal visual features
    Ben Ahmed, Olfa
    Benois-Pineau, Jenny
    Allard, Michele
    Ben Amar, Chokri
    Catheline, Gwenaeelle
    MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (04) : 1249 - 1266