Combining multiple anatomical MRI measures improves Alzheimer's disease classification

被引:51
|
作者
de Vos, Frank [1 ,2 ,3 ]
Schouten, Tijn M. [1 ,2 ,3 ]
Hafkemeijer, Anne [1 ,2 ,3 ]
Dopper, Elise G. P. [2 ,4 ,5 ]
van Swieten, John C. [4 ,6 ]
de Rooij, Mark [1 ,3 ]
van der Grond, Jeroen [2 ]
Rombouts, Serge A. R. B. [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Psychol, Wassenaarseweg 52, NL-2333 AK Leiden, Netherlands
[2] Leiden Univ, Dept Radiol, Med Ctr, Leiden, Netherlands
[3] Leiden Inst Brain & Cognit, Leiden, Netherlands
[4] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
[5] Vrije Univ Amsterdam Med Ctr, Dept Neurol, Amsterdam, Netherlands
[6] Vrije Univ Amsterdam Med Ctr, Dept Clin Genet, Amsterdam, Netherlands
关键词
Alzheimer's disease; anatomical MRI; cortical thickness; cortical area; cortical curvature; grey matter density; subcortical volumes; hippocampal shape; classification; MILD COGNITIVE IMPAIRMENT; VOXEL-BASED MORPHOMETRY; GRAY-MATTER LOSS; SURFACE-BASED ANALYSIS; CORTICAL THICKNESS; STRUCTURAL MRI; HIPPOCAMPAL; DIAGNOSIS; ATROPHY; SEGMENTATION;
D O I
10.1002/hbm.23147
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Several anatomical MRI markers for Alzheimer's disease (AD) have been identified. Hippocampal volume, cortical thickness, and grey matter density have been used successfully to discriminate AD patients from controls. These anatomical MRI measures have so far mainly been used separately. The full potential of anatomical MRI scans for AD diagnosis might thus not yet have been used optimally. In this study, we therefore combined multiple anatomical MRI measures to improve diagnostic classification of AD. For 21 clinically diagnosed AD patients and 21 cognitively normal controls, we calculated (i) cortical thickness, (ii) cortical area, (iii) cortical curvature, (iv) grey matter density, (v) subcortical volumes, and (vi) hippocampal shape. These six measures were used separately and combined as predictors in an elastic net logistic regression. We made receiver operating curve plots and calculated the area under the curve (AUC) to determine classification performance. AUC values for the single measures ranged from 0.67 (cortical thickness) to 0.94 (grey matter density). The combination of all six measures resulted in an AUC of 0.98. Our results demonstrate that the different anatomical MRI measures contain complementary information. A combination of these measures may therefore improve accuracy of AD diagnosis in clinical practice. Hum Brain Mapp 37:1920-1929, 2016. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1920 / 1929
页数:10
相关论文
共 50 条
  • [31] Simultaneous segmentation and grading of anatomical structures for patient's classification: Application to Alzheimer's disease
    Coupe, Pierrick
    Eskildsen, Simon F.
    Manjon, Jose V.
    Fonov, Vladimir S.
    Collins, D. Louis
    NEUROIMAGE, 2012, 59 (04) : 3736 - 3747
  • [32] Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer's disease
    Furney, S. J.
    Simmons, A.
    Breen, G.
    Pedroso, I.
    Lunnon, K.
    Proitsi, P.
    Hodges, A.
    Powell, J.
    Wahlund, L-O
    Kloszewska, I.
    Mecocci, P.
    Soininen, H.
    Tsolaki, M.
    Vellas, B.
    Spenger, C.
    Lathrop, M.
    Shen, L.
    Kim, S.
    Saykin, A. J.
    Weiner, M. W.
    Lovestone, S.
    MOLECULAR PSYCHIATRY, 2011, 16 (11) : 1130 - 1138
  • [33] Cytoarchitectonic Mapping of MRI Detects Rapid Changes in Alzheimer's Disease
    Blair, Jamie C.
    Lasiecka, Zofia M.
    Patrie, James
    Barrett, Matthew J.
    Druzgal, T. Jason
    FRONTIERS IN NEUROLOGY, 2020, 11
  • [34] Early detection of Alzheimer's disease using MRI hippocampal texture
    Sorensen, Lauge
    Igel, Christian
    Hansen, Naja Liv
    Osler, Merete
    Lauritzen, Martin
    Rostrup, Egill
    Nielsen, Mads
    HUMAN BRAIN MAPPING, 2016, 37 (03) : 1148 - 1161
  • [35] The Amnestic Syndrome of Hippocampal type in Alzheimer's Disease: An MRI Study
    Sarazin, Marie
    Chauvire, Valerie
    Gerardin, Emilie
    Colliot, Olivier
    Kinkingnehun, Serge
    de Souza, Leonardo Cruz
    Hugonot-Diener, Laurence
    Garnero, Line
    Lehericya, Stephane
    Chupin, Marie
    Dubois, Bruno
    JOURNAL OF ALZHEIMERS DISEASE, 2010, 22 (01) : 285 - 294
  • [36] Classification and prediction of clinical diagnosis of Alzheimer's disease based on MRI and plasma measures of α-/γ-tocotrienols and γ-tocopherol
    Mangialasche, F.
    Westman, E.
    Kivipelto, M.
    Muehlboeck, J. -S.
    Cecchetti, R.
    Baglioni, M.
    Tarducci, R.
    Gobbi, G.
    Floridi, P.
    Soininen, H.
    Kloszewska, I.
    Tsolaki, M.
    Vellas, B.
    Spenger, C.
    Lovestone, S.
    Wahlund, L. -O.
    Simmons, A.
    Mecocci, P.
    JOURNAL OF INTERNAL MEDICINE, 2013, 273 (06) : 602 - 621
  • [37] Odor Identification Screening Improves Diagnostic Classification in Incipient Alzheimer's Disease
    Quarmley, Megan
    Moberg, Paul J.
    Mechanic-Hamilton, Dawn
    Kabadi, Sushila
    Arnold, Steven E.
    Wolk, David A.
    Roalf, David R.
    JOURNAL OF ALZHEIMERS DISEASE, 2017, 55 (04) : 1497 - 1507
  • [38] Education increases reserve against Alzheimer's disease-evidence from structural MRI analysis
    Liu, Yawu
    Julkunen, Valtteri
    Paajanen, Teemu
    Westman, Eric
    Wahlund, Lars-Olof
    Aitken, Andrew
    Sobow, Tomasz
    Mecocci, Patrizia
    Tsolaki, Magda
    Vellas, Bruno
    Muehlboeck, Sebastian
    Spenger, Christian
    Lovestone, Simon
    Simmons, Andrew
    Soininen, Hilkka
    NEURORADIOLOGY, 2012, 54 (09) : 929 - 938
  • [39] Deep Learning for Alzheimer's Disease Classification using Texture Features
    So, Jae-Hong
    Madusanka, Nuwan
    Choi, Heung-Kook
    Choi, Boo-Kyeong
    Park, Hyeon-Gyun
    CURRENT MEDICAL IMAGING, 2019, 15 (07) : 689 - 698
  • [40] Stability of graph theoretical measures in structural brain networks in Alzheimer's disease
    Martensson, Gustav
    Pereira, Joana B.
    Mecocci, Patrizia
    Vellas, Bruno
    Tsolaki, Magda
    Kloszewska, Iwona
    Soininen, Hilkka
    Lovestone, Simon
    Simmons, Andrew
    Volpe, Giovanni
    Westman, Eric
    SCIENTIFIC REPORTS, 2018, 8