Combining multiple anatomical MRI measures improves Alzheimer's disease classification

被引:51
|
作者
de Vos, Frank [1 ,2 ,3 ]
Schouten, Tijn M. [1 ,2 ,3 ]
Hafkemeijer, Anne [1 ,2 ,3 ]
Dopper, Elise G. P. [2 ,4 ,5 ]
van Swieten, John C. [4 ,6 ]
de Rooij, Mark [1 ,3 ]
van der Grond, Jeroen [2 ]
Rombouts, Serge A. R. B. [1 ,2 ,3 ]
机构
[1] Leiden Univ, Inst Psychol, Wassenaarseweg 52, NL-2333 AK Leiden, Netherlands
[2] Leiden Univ, Dept Radiol, Med Ctr, Leiden, Netherlands
[3] Leiden Inst Brain & Cognit, Leiden, Netherlands
[4] Erasmus MC, Dept Neurol, Rotterdam, Netherlands
[5] Vrije Univ Amsterdam Med Ctr, Dept Neurol, Amsterdam, Netherlands
[6] Vrije Univ Amsterdam Med Ctr, Dept Clin Genet, Amsterdam, Netherlands
关键词
Alzheimer's disease; anatomical MRI; cortical thickness; cortical area; cortical curvature; grey matter density; subcortical volumes; hippocampal shape; classification; MILD COGNITIVE IMPAIRMENT; VOXEL-BASED MORPHOMETRY; GRAY-MATTER LOSS; SURFACE-BASED ANALYSIS; CORTICAL THICKNESS; STRUCTURAL MRI; HIPPOCAMPAL; DIAGNOSIS; ATROPHY; SEGMENTATION;
D O I
10.1002/hbm.23147
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Several anatomical MRI markers for Alzheimer's disease (AD) have been identified. Hippocampal volume, cortical thickness, and grey matter density have been used successfully to discriminate AD patients from controls. These anatomical MRI measures have so far mainly been used separately. The full potential of anatomical MRI scans for AD diagnosis might thus not yet have been used optimally. In this study, we therefore combined multiple anatomical MRI measures to improve diagnostic classification of AD. For 21 clinically diagnosed AD patients and 21 cognitively normal controls, we calculated (i) cortical thickness, (ii) cortical area, (iii) cortical curvature, (iv) grey matter density, (v) subcortical volumes, and (vi) hippocampal shape. These six measures were used separately and combined as predictors in an elastic net logistic regression. We made receiver operating curve plots and calculated the area under the curve (AUC) to determine classification performance. AUC values for the single measures ranged from 0.67 (cortical thickness) to 0.94 (grey matter density). The combination of all six measures resulted in an AUC of 0.98. Our results demonstrate that the different anatomical MRI measures contain complementary information. A combination of these measures may therefore improve accuracy of AD diagnosis in clinical practice. Hum Brain Mapp 37:1920-1929, 2016. (c) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:1920 / 1929
页数:10
相关论文
共 50 条
  • [21] Functional Brain Network Measures for Alzheimer’s Disease Classification
    Wang, Luyun
    Sheng, Jinhua
    Zhang, Qiao
    Zhou, Rougang
    Li, Zhongjin
    Xin, Yu
    Zhang, Qian
    IEEE ACCESS, 2023, 11 : 111832 - 111845
  • [22] Multimodal Prediction of Alzheimer's Disease Severity Level Based on Resting-State EEG and Structural MRI
    Jesus, Belmir, Jr.
    Cassani, Raymundo
    McGeown, William J.
    Cecchi, Marco
    Fadem, K. C.
    Falk, Tiago H.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2021, 15
  • [23] Anatomical MRI and DTI in the Diagnosis of Alzheimer's Disease: A European Multicenter Study
    Teipel, Stefan J.
    Wegrzyn, Martin
    Meindl, Thomas
    Frisoni, Giovanni
    Bokde, Arun L. W.
    Fellgiebel, Andreas
    Filippi, Massimo
    Hampel, Harald
    Kloeppel, Stefan
    Hauensteink, Karlheinz
    Ewers, Michael
    JOURNAL OF ALZHEIMERS DISEASE, 2012, 31 : S33 - S47
  • [24] PET Imaging of Tau Pathology and Amyloid-β, and MRI for Alzheimer's Disease Feature Fusion and Multimodal Classification
    Shojaie, Mehdi
    Tabarestani, Solale
    Cabrerizo, Mercedes
    DeKosky, Steven T.
    Vaillancourt, David E.
    Loewenstein, David
    Duara, Ranjan
    Adjouadi, Malek
    JOURNAL OF ALZHEIMERS DISEASE, 2021, 84 (04) : 1497 - 1514
  • [25] MRI Radiomics Classification and Prediction in Alzheimer's Disease and Mild Cognitive Impairment: A Review
    Feng, Qi
    Ding, Zhongxiang
    CURRENT ALZHEIMER RESEARCH, 2020, 17 (03) : 297 - 309
  • [26] Feature-ranking-based Alzheimer's disease classification from structural MRI
    Beheshti, Iman
    Demirel, Hasan
    MAGNETIC RESONANCE IMAGING, 2016, 34 (03) : 252 - 263
  • [27] Early classification of Alzheimer's disease using hippocampal texture from structural MRI
    Zhao, Kun
    Ding, Yanhui
    Wang, Pan
    Dou, Xuejiao
    Zhou, Bo
    Yao, Hongxiang
    An, Ningyu
    Zhang, Yongxin
    Zhang, Xi
    Liu, Yong
    MEDICAL IMAGING 2017: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2017, 10137
  • [28] Reproducible Evaluation of Diffusion MRI Features for Automatic Classification of Patients with Alzheimer's Disease
    Wen, Junhao
    Samper-Gonzalez, Jorge
    Bottani, Simona
    Routier, Alexandre
    Burgos, Ninon
    Jacquemont, Thomas
    Fontanella, Sabrina
    Durrleman, Stanley
    Epelbaum, Stephane
    Bertrand, Anne
    Colliot, Olivier
    NEUROINFORMATICS, 2021, 19 (01) : 57 - 78
  • [29] Deep Radiomic Analysis of MRI Related to Alzheimer's Disease
    Chaddad, Ahmad
    Desrosiers, Christian
    Niazi, Tamim
    IEEE ACCESS, 2018, 6 : 58213 - 58221
  • [30] Pre-trained MRI-based Alzheimer's disease classification models to classify memory clinic patients
    de Vos, Frank
    Schouten, Tijn M.
    Koini, Marisa
    Bouts, Mark J. R. J.
    Feis, Rogier A.
    Lechner, Anita
    Schmidt, Reinhold
    van Buchem, Mark A.
    Verhey, Frans R. J.
    Rikkert, Marcel G. M. Olde
    Scheltens, Philip
    de Rooij, Mark
    van der Grond, Jeroen
    Rombouts, Serge A. R. B.
    NEUROIMAGE-CLINICAL, 2020, 27