Vision-based displacement measurement enhanced by super-resolution using generative adversarial networks

被引:26
|
作者
Sun, Chujin [1 ]
Gu, Donglian [2 ]
Zhang, Yi [1 ]
Lu, Xinzheng [1 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, China Educ Minist, Key Lab Civil Engn Safety & Durabil, Beijing 100084, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Res Inst Urbanizat & Urban Safety, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
computer vision; displacement measurement; generative adversarial networks; super-resolution; surveillance video cameras; DIGITAL IMAGE CORRELATION; COMPUTER VISION; DYNAMIC DISPLACEMENT; CIVIL INFRASTRUCTURE; DAMAGE DETECTION; OPTICAL-FLOW; FEATURES; RESOLUTION; SYSTEM;
D O I
10.1002/stc.3048
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Monitoring the deformation or displacement response of buildings is critical for structural safety. Recently, the development of computer vision has led to extensive research on the application of vision-based measurements in the structural monitoring. This enables the use of urban surveillance video cameras, which are widely installed and can produce numerous images and videos of urban scenes to measure the structural displacement. However, the structural displacement measurement may be inaccurate owing to the limited hardware resolution of the surveillance video cameras or the long distance from the cameras to the monitored targets. To this end, this study proposes a method to improve the displacement measurement accuracy using a deep learning super-resolution model based on generative adversarial networks. The proposed method achieves texture detail enhancement of low-resolution images or videos by supplementing high-resolution photographs of the target, thus improving the accuracy of the vision-based displacement measurement. The proposed method shows good accuracy and stability in both the static and dynamic experimental validations compared with the original low-resolution images/video and interpolation-based super-resolution images/video. In conclusion, the proposed method can support the displacement measurement of buildings and infrastructures based on urban surveillance video cameras.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] An accurate and distraction-free vision-based structural displacement measurement method integrating Siamese network based tracker and correlation-based template matching
    Xu, Yan
    Zhang, Jian
    Brownjohn, James
    MEASUREMENT, 2021, 179
  • [42] Number plate recognition from enhanced super-resolution using generative adversarial network
    Kabiraj, Anwesh
    Pal, Debojyoti
    Ganguly, Debayan
    Chatterjee, Kingshuk
    Roy, Sudipta
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (09) : 13837 - 13853
  • [43] Number plate recognition from enhanced super-resolution using generative adversarial network
    Anwesh Kabiraj
    Debojyoti Pal
    Debayan Ganguly
    Kingshuk Chatterjee
    Sudipta Roy
    Multimedia Tools and Applications, 2023, 82 : 13837 - 13853
  • [44] Image Super-Resolution Reconstruction Algorithm Based on Improved Enhanced Generative Adversarial Network
    She, Xiangyang
    Yang, Qinghao
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, NETWORK SECURITY AND COMMUNICATION TECHNOLOGY, CNSCT 2024, 2024, : 644 - 651
  • [45] Super-resolution of cardiac magnetic resonance images using Laplacian Pyramid based on Generative Adversarial Networks
    Zhao, Ming
    Liu, Xinhong
    Liu, Hui
    Wong, Kelvin K. L.
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2020, 80
  • [46] Image Super-Resolution Reconstruction Using Generative Adversarial Networks Based on Wide-Channel Activation
    Sun, Xudong
    Zhao, Zhenxi
    Zhang, Song
    Liu, Jintao
    Yang, Xinting
    Zhou, Chao
    IEEE ACCESS, 2020, 8 : 33838 - 33854
  • [47] Video Quality Enhancement using Generative Adversarial Networks-based Super-Resolution and Noise Removal
    Ahmad, Mobeen
    Abdullah, Muhammad
    Han, Dongil
    2021 36TH INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS AND COMMUNICATIONS (ITC-CSCC), 2021,
  • [48] Underwater Acoustic Image Enhancement by Using Fast Super-Resolution with Generative Adversarial Networks
    Bucci, Alessandro
    Topini, Alberto
    Franchi, Matteo
    Zacchini, Leonardo
    Secciani, Nicola
    Ridolfi, Alessandro
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [49] Spatial Transformer Generative Adversarial Network for Robust Image Super-Resolution
    Kasem, Hossam M.
    Hung, Kwok-Wai
    Jiang, Jianmin
    IEEE ACCESS, 2019, 7 : 182993 - 183009
  • [50] LPSRGAN: Generative adversarial networks for super-resolution of license plate image
    Pan, Yuecheng
    Tang, Jin
    Tjahjadi, Tardi
    NEUROCOMPUTING, 2024, 580