Vision-based displacement measurement enhanced by super-resolution using generative adversarial networks

被引:26
|
作者
Sun, Chujin [1 ]
Gu, Donglian [2 ]
Zhang, Yi [1 ]
Lu, Xinzheng [1 ]
机构
[1] Tsinghua Univ, Dept Civil Engn, China Educ Minist, Key Lab Civil Engn Safety & Durabil, Beijing 100084, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Res Inst Urbanizat & Urban Safety, Beijing, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
computer vision; displacement measurement; generative adversarial networks; super-resolution; surveillance video cameras; DIGITAL IMAGE CORRELATION; COMPUTER VISION; DYNAMIC DISPLACEMENT; CIVIL INFRASTRUCTURE; DAMAGE DETECTION; OPTICAL-FLOW; FEATURES; RESOLUTION; SYSTEM;
D O I
10.1002/stc.3048
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Monitoring the deformation or displacement response of buildings is critical for structural safety. Recently, the development of computer vision has led to extensive research on the application of vision-based measurements in the structural monitoring. This enables the use of urban surveillance video cameras, which are widely installed and can produce numerous images and videos of urban scenes to measure the structural displacement. However, the structural displacement measurement may be inaccurate owing to the limited hardware resolution of the surveillance video cameras or the long distance from the cameras to the monitored targets. To this end, this study proposes a method to improve the displacement measurement accuracy using a deep learning super-resolution model based on generative adversarial networks. The proposed method achieves texture detail enhancement of low-resolution images or videos by supplementing high-resolution photographs of the target, thus improving the accuracy of the vision-based displacement measurement. The proposed method shows good accuracy and stability in both the static and dynamic experimental validations compared with the original low-resolution images/video and interpolation-based super-resolution images/video. In conclusion, the proposed method can support the displacement measurement of buildings and infrastructures based on urban surveillance video cameras.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Super-Resolution Reconstruction of Cell Images Based on Generative Adversarial Networks
    Pan, Bin
    Du, Yifeng
    Guo, Xiaoming
    IEEE ACCESS, 2024, 12 : 72252 - 72263
  • [22] License Plate Image Resolution Enhancement Using Super-Resolution Generative Adversarial Network
    Mei, Yuzheng
    Moelter, Mark
    Haddad, Rami J.
    SOUTHEASTCON 2024, 2024, : 1262 - 1267
  • [23] Efficient matching of Transformer-enhanced features for accurate vision-based displacement measurement
    Zhang, Haoyu
    Wu, Stephen
    Luo, Xiangyun
    Huang, Yong
    Li, Hui
    AUTOMATION IN CONSTRUCTION, 2025, 171
  • [24] Computer vision-based displacement measurement with m-sequence target
    Hu, Yi-ding
    Xia, Qi
    Hou, Rong-rong
    Xia, Yong
    Yan, Jian-yi
    SMART STRUCTURES AND SYSTEMS, 2021, 27 (03) : 537 - 546
  • [25] Mars Image Super-Resolution Based on Generative Adversarial Network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    IEEE ACCESS, 2021, 9 : 108889 - 108898
  • [26] Enhanced Image Super Resolution Using ResNet Generative Adversarial Networks
    Samreen, Shirina
    Venu, Vasantha Sandhya
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 2035 - 2046
  • [27] Perception-Enhanced Image Super-Resolution via Relativistic Generative Adversarial Networks
    Thang Vu
    Tung M Luu
    Yoo, Chang D.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 98 - 113
  • [28] Super-Resolution of Sentinel-2 Imagery Using Generative Adversarial Networks
    Salgueiro Romero, Luis
    Marcello, Javier
    Vilaplana, Veronica
    REMOTE SENSING, 2020, 12 (15)
  • [29] Generative Adversarial Networks with Enhanced Symmetric Residual Units for Single Image Super-Resolution
    Wu, Xianyu
    Li, Xiaojie
    He, Jia
    Wu, Xi
    Mumtaz, Imran
    MULTIMEDIA MODELING (MMM 2019), PT I, 2019, 11295 : 483 - 494
  • [30] Multiframe infrared image super-resolution reconstruction using generative adversarial networks
    Li F.
    He X.
    Wei Z.
    He J.
    He D.
    2018, Chinese Society of Astronautics (47):