Meta-learning for Adaptive Image Segmentation

被引:0
|
作者
Sellaouti, Aymen [1 ]
Jaafra, Yasmina [1 ]
Hamouda, Atef [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LIPAH, Tunis 2092, Tunisia
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I | 2014年 / 8814卷
关键词
Object-based analysis; Segmentation; Very high resolution satellite image; Meta-learning; Stacked generalization; STACKED GENERALIZATION; CLASSIFICATION; ALGORITHM;
D O I
10.1007/978-3-319-11758-4_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most image segmentations require control parameters setting that depends on the variability of processed images characteristics. This paper introduces a meta-learning system using stacked generalization to adjust segmentation parameters within an object-based analysis of very high resolution urban satellite images. The starting point of our system is the construction of the knowledge database from the concatenation of images characterization and their correct segmentation parameters. Meta-knowledge database is then built from the integration of base-learners performance evaluated by cross-validation. It will allow knowledge transfer to second-level learning and the generation of the meta-classifier that will predict new image segmentation parameters. An experimental study on a satellite image covering the urban area of Strasbourg region enabled us to evaluate the effectiveness of the adopted approach.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [41] Single image reflection removal using meta-learning
    Ishiyama, Shin
    Lu, Humin
    Soomro, Afzal Ahmed
    Mokhtar, Ainul Akmar
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [42] TGOnline: Enhancing Temporal Graph Learning with Adaptive Online Meta-Learning
    Wang, Ruijie
    Huang, Jingyuan
    Zhang, Yutong
    Li, Jinyang
    Wang, Yufeng
    Zhao, Wanyu
    Liu, Shengzhong
    Mendis, Charith
    Abdelzaher, Tarek
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1659 - 1669
  • [43] Amortized Bayesian Prototype Meta-learning: A New Probabilistic Meta-learning Approach to Few-shot Image Classification
    Sun, Zhuo
    Wu, Jijie
    Li, Xiaoxu
    Yang, Wenming
    Xue, Jing-Hao
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [44] Few-Shot Image Segmentation Using Generating Mask with Meta-Learning Classifier Weight Transformer Network
    Wang, Jian-Hong
    Le, Phuong Thi
    Jhou, Fong-Ci
    Su, Ming-Hsiang
    Li, Kuo-Chen
    Chen, Shih-Lun
    Pham, Tuan
    He, Ji-Long
    Wang, Chien-Yao
    Wang, Jia-Ching
    Chang, Pao-Chi
    ELECTRONICS, 2024, 13 (13)
  • [45] Learning Meta-Learning (LML) dataset: Survey data of meta-learning parameters
    Corraya, Sonia
    Al Mamun, Shamim
    Kaiser, M. Shamim
    DATA IN BRIEF, 2023, 51
  • [46] Adaptive Multi-Teacher Knowledge Distillation with Meta-Learning
    Zhang, Hailin
    Chen, Defang
    Wang, Can
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 1943 - 1948
  • [47] A Novel Hierarchical Adaptive Feature Fusion Method for Meta-Learning
    Ding, Enjie
    Chu, Xu
    Liu, Zhongyu
    Zhang, Kai
    Yu, Qiankun
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [48] SPEAKER ADAPTIVE TRAINING USING MODEL AGNOSTIC META-LEARNING
    Klejch, Ondrej
    Fainberg, Joachim
    Bell, Peter
    Renals, Steve
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 881 - 888
  • [49] Bayesian Meta-Learning for Adaptive Traffic Prediction in Wireless Networks
    Wang, Zihuan
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 6620 - 6633
  • [50] MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation
    Farshad, Azade
    Makarevich, Anastasia
    Belagiannis, Vasileios
    Navab, Nassir
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER (DART 2022), 2022, 13542 : 45 - 55