Meta-learning for Adaptive Image Segmentation

被引:0
|
作者
Sellaouti, Aymen [1 ]
Jaafra, Yasmina [1 ]
Hamouda, Atef [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LIPAH, Tunis 2092, Tunisia
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I | 2014年 / 8814卷
关键词
Object-based analysis; Segmentation; Very high resolution satellite image; Meta-learning; Stacked generalization; STACKED GENERALIZATION; CLASSIFICATION; ALGORITHM;
D O I
10.1007/978-3-319-11758-4_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most image segmentations require control parameters setting that depends on the variability of processed images characteristics. This paper introduces a meta-learning system using stacked generalization to adjust segmentation parameters within an object-based analysis of very high resolution urban satellite images. The starting point of our system is the construction of the knowledge database from the concatenation of images characterization and their correct segmentation parameters. Meta-knowledge database is then built from the integration of base-learners performance evaluated by cross-validation. It will allow knowledge transfer to second-level learning and the generation of the meta-classifier that will predict new image segmentation parameters. An experimental study on a satellite image covering the urban area of Strasbourg region enabled us to evaluate the effectiveness of the adopted approach.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [21] Meta-Learning with a Geometry-Adaptive Preconditioner
    Kang, Suhyun
    Hwang, Duhun
    Eo, Moonjung
    Kim, Taesup
    Rhee, Wonjong
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 16080 - 16090
  • [22] Context Adaptive Metric Model for Meta-learning
    Wang, Zhe
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 393 - 405
  • [23] Cluster, Split, Fuse, and Update: Meta-Learning for Open Compound Domain Adaptive Semantic Segmentation
    Gong, Rui
    Chen, Yuhua
    Paudel, Danda Pani
    Li, Yawei
    Chhatkuli, Ajad
    Li, Wen
    Dai, Dengxin
    Van Gool, Luc
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 8340 - 8350
  • [24] META-LEARNING APPLICATIONS IN DIGITAL IMAGE PROCESSING
    Silva, Aristofanes Correa
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING (IWSSIP), 27TH EDITION, 2020, : 19 - 20
  • [25] A META-LEARNING APPROACH FOR MEDICAL IMAGE REGISTRATION
    Park, Heejung
    Lee, Gyeong Min
    Kim, Soopil
    Ryu, Ga Hyung
    Jeong, Areum
    Sagong, Min
    Park, Sang Hyun
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [26] Consistency-Guided Meta-learning for Bootstrapping Semi-supervised Medical Image Segmentation
    Wei, Qingyue
    Yu, Lequan
    Li, Xianhang
    Shao, Wei
    Xie, Cihang
    Xing, Lei
    Zhou, Yuyin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IV, 2023, 14223 : 183 - 193
  • [27] Semi-supervised Meta-learning with Disentanglement for Domain-Generalised Medical Image Segmentation
    Liu, Xiao
    Thermos, Spyridon
    O'Neil, Alison
    Tsaftaris, Sotirios A.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 307 - 317
  • [28] MLANE: Meta-Learning Based Adaptive Network Embedding
    Cui, Chen
    Yang, Ning
    Yu, Philip S.
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 904 - 909
  • [29] Adaptive guidance and integrated navigation with reinforcement meta-learning
    Gaudet, Brian
    Linares, Richard
    Furfaro, Roberto
    ACTA ASTRONAUTICA, 2020, 169 : 180 - 190
  • [30] Geometry-adaptive Meta-learning in Riemannian Manifolds
    Gao, Zhi
    PROCEEDINGS OF THE ACM TURING AWARD CELEBRATION CONFERENCE-CHINA 2024, ACM-TURC 2024, 2024, : 231 - 232