Meta-learning for Adaptive Image Segmentation

被引:0
|
作者
Sellaouti, Aymen [1 ]
Jaafra, Yasmina [1 ]
Hamouda, Atef [1 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LIPAH, Tunis 2092, Tunisia
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2014, PT I | 2014年 / 8814卷
关键词
Object-based analysis; Segmentation; Very high resolution satellite image; Meta-learning; Stacked generalization; STACKED GENERALIZATION; CLASSIFICATION; ALGORITHM;
D O I
10.1007/978-3-319-11758-4_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most image segmentations require control parameters setting that depends on the variability of processed images characteristics. This paper introduces a meta-learning system using stacked generalization to adjust segmentation parameters within an object-based analysis of very high resolution urban satellite images. The starting point of our system is the construction of the knowledge database from the concatenation of images characterization and their correct segmentation parameters. Meta-knowledge database is then built from the integration of base-learners performance evaluated by cross-validation. It will allow knowledge transfer to second-level learning and the generation of the meta-classifier that will predict new image segmentation parameters. An experimental study on a satellite image covering the urban area of Strasbourg region enabled us to evaluate the effectiveness of the adopted approach.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 50 条
  • [1] MetaSeg: A survey of meta-learning for image segmentation
    Sun J.
    Li Y.
    Cognitive Robotics, 2021, 1 : 83 - 91
  • [2] Meta-seg: A survey of meta-learning for image segmentation
    Luo, Shuai
    Li, Yujie
    Gao, Pengxiang
    Wang, Yichuan
    Serikawa, Seiichi
    PATTERN RECOGNITION, 2022, 126
  • [3] A meta-learning approach for selecting image segmentation algorithm
    Aguiar, Gabriel Jonas
    Mantovani, Rafael Gomes
    Mastelini, Saulo M.
    de Carvalho, Andre C. P. F. L.
    Campos, Gabriel F. C.
    Barbon Junior, Sylvio
    PATTERN RECOGNITION LETTERS, 2019, 128 : 480 - 487
  • [4] Meta-learning for Medical Image Segmentation Uncertainty Quantification
    Cetindag, Sabri Can
    Yergin, Mert
    Alis, Deniz
    Oksuz, Ilkay
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 578 - 584
  • [5] A Meta-learning Approach for Recommendation of Image Segmentation Algorithms
    Campos, Gabriel F. C.
    Barbon, Sylvio, Jr.
    Mantovani, Rafael G.
    2016 29TH SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2016, : 370 - 377
  • [6] Domain Adaptation for Medical Image Segmentation: A Meta-Learning Method
    Zhang, Penghao
    Li, Jiayue
    Wang, Yining
    Pan, Judong
    JOURNAL OF IMAGING, 2021, 7 (02)
  • [7] Meta-Learning Based Knowledge Distillation for Domain Adaptive Nighttime Segmentation
    Guan, Hao
    Liu, Jun
    Wang, Simiao
    Li, Yunan
    Lu, Mingyu
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT II, 2025, 15032 : 31 - 45
  • [8] Unsupervised Prostate Cancer Histopathology Image Segmentation via Meta-Learning
    Fetisov, Nikolai
    Hall, Lawrence
    Goldgof, Dantry
    Schabath, Matthew
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 838 - 844
  • [9] Meta-Learning with Adaptive Hyperparameters
    Baik, Sungyong
    Choi, Myungsub
    Choi, Janghoon
    Kim, Heewon
    Lee, Kyoung Mu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [10] Fast Adaptive Meta-Learning for Few-Shot Image Generation
    Phaphuangwittayakul, Aniwat
    Guo, Yi
    Ying, Fangli
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2205 - 2217