On modelling of semilinear singularly perturbed reaction-diffusion problem

被引:8
作者
Surla, K [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Inst Math, YU-21000 Novi Sad, Yugoslavia
关键词
boundary value problem; singular perturbation; finite-difference method; spline approximation;
D O I
10.1016/S0362-546X(97)00402-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:61 / 66
页数:6
相关论文
共 12 条
[1]  
[Anonymous], ZB RAD PRIR MAT FA M
[2]  
FAREL AP, 1995, NMR9202 CTR WISK INF
[3]  
GARTLAND EC, 1988, MATH COMPUT, V51, P631, DOI 10.1090/S0025-5718-1988-0935072-1
[4]  
HERCEG D, 1990, NUMER MATH, V56, P675, DOI 10.1007/BF01405196
[5]  
Ortega J.M, 1970, CLASSICS APPL MATH
[6]  
SHISHKIN GI, 1988, SOV J NUMER ANAL MAT, V3, P393
[7]  
SUN G, 1993, 11 U COLL, P1
[8]   AN OPTIMAL UNIFORMLY CONVERGENT OCI DIFFERENCE SCHEME FOR A SINGULAR PERTURBATION PROBLEM [J].
SURLA, K ;
UZELAC, Z .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1990, 36 (3-4) :239-250
[9]   SOLVING SINGULARLY PERTURBED BOUNDARY-VALUE-PROBLEMS BY SPLINE IN TENSION [J].
SURLA, K ;
STOJANOVIC, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 24 (03) :355-363
[10]  
SURLA K, 1994, IN PRESS U NOVOM S M