The Dunford-Pettis property for symmetric spaces

被引:15
作者
Kaminska, A [1 ]
Mastylo, M
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-60769 Poznan, Poland
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2000年 / 52卷 / 04期
关键词
D O I
10.4153/CJM-2000-033-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A complete description of symmetric spaces on a separable measure space with the Dunford-Pettis property is given. It is shown that l(1), c(o) and l(infinity) are the only symmetric sequence spaces with the Dunford-Pettis property, and that in the class of symmetric spaces on (0, alpha), 0 < alpha less than or equal to infinity, the only spaces with the Dunford-Pettis property are L-1, L-infinity, L-1 boolean AND L-infinity, L-1 + L-infinity, (L-infinity)(o) and (L-1 + L-infinity)(o),where X-o denotes the norm closure of L-1 boolean AND L-infinity in X. It is also proved that all Banach dual spaces of L-1 boolean AND L-infinity and L-1 + L-infinity have the Dunford-Pettis property. New examples of Banach spaces showing that the Dunford-Pettis property is not a three-space property are also presented. As applications we obtain that the spaces (L-1 + L-infinity)(o) and (L-infinity)(o) have a unique symmetric structure, and we get a characterization of the Dunford-Pettis property of some Kothe-Bochner spaces.
引用
收藏
页码:789 / 803
页数:15
相关论文
共 32 条
[1]  
ABRAMOVICH YA, 1975, MAT ZAMETKI, V18, P313
[2]  
Aliprantis C. D., 1985, POSITIVE OPERATORS
[3]  
[Anonymous], RIESZ SPACES
[4]  
[Anonymous], CBMS REGIONAL C SERI
[5]  
Bennett C., 1988, INTERPOLATION OPERAT
[6]  
BERGH J, 1976, GRUNDHLEHREN MATH WI, V223
[7]  
BOURGAIN J, 1984, ACTA MATH-DJURSHOLM, V152, P1, DOI 10.1007/BF02392189
[8]  
BOURGAIN J, 1984, STUD MATH, V77, P245
[9]  
CALDERON AP, 1966, STUD MATH, V26, P273
[10]  
Castillo Jesus M. F., 1997, LECT NOTES MATH, V1667