Solving generalized semi-Markov decision processes using continuous phase-type distributions

被引:0
|
作者
Younes, HLS [1 ]
Simmons, RG [1 ]
机构
[1] Carnegie Mellon Univ, Sch Comp Sci, Pittsburgh, PA 15213 USA
来源
PROCEEDING OF THE NINETEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE SIXTEENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE | 2004年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce the generalized semi-Markov decision process (GSMDP) as an extension of continuous-time MDPs and semi-Markov decision processes (SMDPs) for modeling stochastic decision processes with asynchronous events and actions. Using phase-type distributions and uniformization, we show how an arbitrary GSMDP can be approximated by a discrete-time MDP, which can then be solved using existing MDP techniques. The techniques we present can also be seen as an alternative approach for solving SMDPs, and we demonstrate that the introduction of phases allows us to generate higher quality policies than those obtained by standard SMDP solution techniques.
引用
收藏
页码:742 / 747
页数:6
相关论文
共 50 条
  • [1] Semi-Markov Models with Phase-Type Sojourn Distributions
    Titman, Andrew C.
    Sharples, Linda D.
    BIOMETRICS, 2010, 66 (03) : 742 - 752
  • [2] Semi-markov processes with phase-type waiting times
    Hongler, MO
    Salama, Y
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 461 - 462
  • [3] Competing Risks Modeling by Extended Phase-Type Semi-Markov Distributions
    Brenda Garcia-Maya
    Nikolaos Limnios
    Bo Henry Lindqvist
    Methodology and Computing in Applied Probability, 2022, 24 : 309 - 319
  • [4] Competing Risks Modeling by Extended Phase-Type Semi-Markov Distributions
    Garcia-Maya, Brenda
    Limnios, Nikolaos
    Lindqvist, Bo Henry
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2022, 24 (01) : 309 - 319
  • [5] A PHASE-TYPE SEMI-MARKOV POINT PROCESS
    LATOUCHE, G
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (01): : 77 - 90
  • [6] GENERALIZED SEMI-MARKOV DECISION-PROCESSES
    DOSHI, BT
    JOURNAL OF APPLIED PROBABILITY, 1979, 16 (03) : 618 - 630
  • [7] A Simulation-based Approach for Solving Generalized Semi-Markov Decision Processes
    Rachelson, Emmanuel
    Quesnel, Gauthier
    Garcia, Frederick
    Fabiani, Patrick
    ECAI 2008, PROCEEDINGS, 2008, 178 : 583 - +
  • [8] SMC for phase-type stochastic nonlinear semi-Markov jump systems
    Gao, Meng
    Qi, Wenhai
    Cao, Jinde
    Cheng, Jun
    Shi, Kaibo
    Gao, Yunteng
    NONLINEAR DYNAMICS, 2022, 108 (01) : 279 - 292
  • [9] SMC for phase-type stochastic nonlinear semi-Markov jump systems
    Meng Gao
    Wenhai Qi
    Jinde Cao
    Jun Cheng
    Kaibo Shi
    Yunteng Gao
    Nonlinear Dynamics, 2022, 108 : 279 - 292
  • [10] CONTINUITY OF GENERALIZED SEMI-MARKOV PROCESSES
    WHITT, W
    MATHEMATICS OF OPERATIONS RESEARCH, 1980, 5 (04) : 494 - 501