共 3 条
Intestine-specific MTP and global ACAT2 deficiency lowers acute cholesterol absorption with chylomicrons and HDLs
被引:30
|作者:
Iqbal, Jahangir
[1
,2
,3
]
Boutjdir, Mohamed
[1
,2
,3
]
Rudel, Lawrence L.
[4
,5
]
Hussain, M. Mahmood
[1
,2
,3
]
机构:
[1] Suny Downstate Med Ctr, Dept Cell Biol, Brooklyn, NY 11203 USA
[2] Suny Downstate Med Ctr, Dept Pediat, Brooklyn, NY 11203 USA
[3] Vet Affairs New York Harbor Healthcare Syst, Brooklyn, NY 11209 USA
[4] Wake Forest Univ, Sch Med, Dept Pathol, Winston Salem, NC 27104 USA
[5] Wake Forest Univ, Sch Med, Dept Biochem, Winston Salem, NC 27104 USA
基金:
美国国家卫生研究院;
关键词:
microsomal triglyceride transfer protein;
acyl-CoA:cholesterol acyltransferase 2;
high density lipoproteins;
chylomicrons;
TRIGLYCERIDE TRANSFER PROTEIN;
DIET-INDUCED HYPERCHOLESTEROLEMIA;
ACYL-COENZYME;
EMBRYONIC LETHALITY;
MICE DEFICIENT;
IN-VIVO;
MULTIPLE;
TRANSPORT;
ABCA1;
ABETALIPOPROTEINEMIA;
D O I:
10.1194/jlr.M047951
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Intestinal cholesterol absorption involves the chylomicron and HDL pathways and is dependent on microsomal triglyceride transfer protein (MTP) and ABCA1, respectively. Chylomicrons transport free and esterified cholesterol, whereas HDLs transport free cholesterol. ACAT2 esterifies cholesterol for secretion with chylomicrons. We hypothesized that free cholesterol accumulated during ACAT2 deficiency may be secreted with HDLs when chylomicron assembly is blocked. To test this, we studied cholesterol absorption in mice deficient in intestinal MTP, global ACAT2, and both intestinal MTP and global ACAT2. Intestinal MTP ablation significantly increased intestinal triglyceride and cholesterol levels and reduced their transport with chylomicrons. In contrast, global ACAT2 deficiency had no effect on triglyceride absorption but significantly reduced cholesterol absorption with chylomicrons and increased cellular free cholesterol. Their combined deficiency reduced cholesterol secretion with both chylomicrons and HDLs. Thus, contrary to our hypothesis, free cholesterol accumulated in the absence of MTP and ACAT2 is unavailable for secretion with HDLs. Global ACAT2 deficiency causes mild hypertriglyceridemia and reduces hepatosteatosis in mice fed high cholesterol diets by increasing hepatic lipoprotein production by unknown mechanisms. We show that this phenotype is preserved in the absence of intestinal MTP in global ACAT2-deficient mice fed a Western diet. Further, we observed increases in hepatic MTP activity in these mice. Thus, ACAT2 deficiency might increase MTP expression to avoid hepatosteatosis in cholesterol-fed animals.jlr Therefore, ACAT2 inhibition might avert hepatosteatosis associated with high cholesterol diets by increasing hepatic MTP expression and lipoprotein production.
引用
收藏
页码:2261 / 2275
页数:15
相关论文