The extended homogeneous balance method and its applications for a class of nonlinear evolution equations

被引:26
作者
El-Wakil, S. A. [1 ]
Abulwafa, E. M. [1 ]
Elhanbaly, A. [1 ]
Abdou, M. A. [1 ]
机构
[1] Mansoura Univ, Fac Sci, Dept Phys, Theoret Res Grp, Mansoura, Egypt
关键词
D O I
10.1016/j.chaos.2006.03.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The extended homogeneous balance method with the aid of computer algebraic system Maple, is proposed for seeking the travelling wave solutions for a class of nonlinear evolution equations, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear evolution equations, respectively. Many new exact travelling wave solutions are successfully obtained. The method is straightforward and concise, and it can be also applied to other nonlinear evolution equations. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1512 / 1522
页数:11
相关论文
共 19 条
[1]  
DAVEY A, 2001, PHYS REV E, V64, P56622
[2]  
Drazin P.G., 1989, SOLITONS INTRO
[3]   Theoretical study of resonance of the Kadomtsev-Petviashvili equation [J].
Duan, WS ;
Shi, YR ;
Hong, XR .
PHYSICS LETTERS A, 2004, 323 (1-2) :89-94
[4]   New exact solutions for a generalized variable coefficients 2D KdV equation [J].
Elwakil, SA ;
El-Labany, SK ;
Zahran, MA ;
Sabry, R .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1083-1086
[5]   Exact travelling wave solutions for the generalized shallow water wave equation [J].
Elwakil, SA ;
El-labany, SK ;
Zahran, MA ;
Sabry, R .
CHAOS SOLITONS & FRACTALS, 2003, 17 (01) :121-126
[6]  
FAN E, 2000, PHYS LETT A, V265, P55
[7]   Applications of the Jacobi elliptic function method to special-type nonlinear equations [J].
Fan, EG ;
Zhang, H .
PHYSICS LETTERS A, 2002, 305 (06) :383-392
[8]   Exact solutions for the higher-order nonlinear Schordinger equation in nonlinear optical fibres [J].
Liu, CP .
CHAOS SOLITONS & FRACTALS, 2005, 23 (03) :949-955
[9]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[10]  
RAO NN, 1997, J PHYS, V29, P109