A techno-economic and life cycle assessment for the production of green methanol from CO2: catalyst and process bottlenecks

被引:80
作者
Cordero-Lanzac, Tomas [1 ,6 ]
Ramirez, Adrian [2 ]
Navajas, Alberto [3 ,4 ]
Gevers, Lieven [2 ]
Brunialti, Sirio
Gandia, Luis M. [3 ,4 ]
Aguayo, Andres T. [1 ]
Sarathy, S. Mani [5 ]
Gascon, Jorge [2 ]
机构
[1] Univ Basque Country UPV EHU, Dept Chem Engn, POB 644, Bilbao 48080, Spain
[2] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr KCC, Adv Catalyt Mat, Thuwal 23955, Saudi Arabia
[3] Publ Univ Navarre UPNA, Dept Sci, Arrosadia Campus S-N, Pamplona 31006, Spain
[4] Univ Publ Navarra UPNA, Inst Adv Mat & Math InaMat2, Edificio Jeronimo Ayanz,Campus Arrosadia, Pamplona 31006, Spain
[5] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr CCRC, Thuwal 23955, Saudi Arabia
[6] Univ Oslo, Dept Chem, Ctr Mat Sci & Nanotechnol SMN, N-0315 Oslo, Norway
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 68卷
关键词
CO2; Methanol; Kinetic modeling; Process simulation; Life cycle assessment; DIMETHYL ETHER SYNTHESIS; CARBON-DIOXIDE; CAPTURED CO2; HYDROGENATION; PURIFICATION; ELECTROFUELS; CONVERSION; EFFICIENT; SYSTEMS; SYNGAS;
D O I
10.1016/j.jechem.2021.09.045
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The success of catalytic schemes for the large-scale valorization of CO2 does not only depend on the development of active, selective and stable catalytic materials but also on the overall process design. Here we present a multidisciplinary study (from catalyst to plant and techno-economic/lifecycle analysis) for the production of green methanol from renewable H-2 and CO2. We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts (InCo) with a thorough process simulation and techno-economic assessment. We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO2. Our results indicate that up to 1.75 ton of CO2 can be abated per ton of produced methanol only if renewable energy is used to run the process, while the sensitivity analysis suggest that either rock-bottom H-2 prices (1.5 $ kg(-1)) or severe CO2 taxation (300 $ per ton) are needed for a profitable methanol plant. Besides, we herein highlight and analyze some critical bottlenecks of the process. Especial attention has been paid to the contribution of H-2 to the overall plant costs, CH4 trace formation, and purity and costs of raw gases. In addition to providing important information for policy makers and industrialists, directions for catalyst (and therefore process) improvements are outlined. (C) 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press.
引用
收藏
页码:255 / 266
页数:12
相关论文
共 57 条
[1]   Evaluation of CO2 Purification Requirements and the Selection of Processes for Impurities Deep Removal from the CO2 Product Stream [J].
Abbas, Zeina ;
Mezher, Toufic ;
Abu-Zahra, Mohammad R. M. .
GHGT-11, 2013, 37 :2389-2396
[2]   Kinetic modeling of dimethyl ether synthesis in a single step on a CuO-ZnO-Al2O3/γ-Al2O3 catalyst [J].
Aguayo, Andres T. ;
Erena, Javier ;
Mier, Diana ;
Arandes, Jose M. ;
Olazar, Martin ;
Bilbao, Javier .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (17) :5522-5530
[3]   Kinetics of CO2 hydrogenation to methanol over silica supported intermetallic Ga3Ni5 catalyst in a continuous differential fixed bed reactor [J].
Ahmad, Kaisar ;
Upadhyayula, Sreedevi .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (01) :1140-1150
[4]   Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes [J].
Alvarez, Andrea ;
Bansode, Atul ;
Urakawa, Atsushi ;
Bavykina, Anastasiya V. ;
Wezendonk, Tim A. ;
Makkee, Michiel ;
Gascon, Jorge ;
Kapteijn, Freek .
CHEMICAL REVIEWS, 2017, 117 (14) :9804-9838
[5]  
[Anonymous], New Energy Outlook 2022
[6]  
[Anonymous], 2018, Standards for accreditation of baccalaureate and graduate nursing programs (amended), P1
[7]   Kinetic modeling of CO2+CO hydrogenation to DME over a CuO-ZnO-ZrO2@SAPO-11 core-shell catalyst [J].
Ateka, Ainara ;
Sanchez-Contador, Miguel ;
Portillo, Ander ;
Bilbao, Javier ;
Aguayo, Andres T. .
FUEL PROCESSING TECHNOLOGY, 2020, 206
[8]  
BASF, 2015, 0 1 PD R5279 PROD DA
[9]   Turning a Methanation Co Catalyst into an In-Co Methanol Producer [J].
Bavykina, Anastasiya ;
Yarulina, Irina ;
Al Abdulghani, Abdullah J. ;
Gevers, Lieven ;
Hedhili, Mohamed Nejib ;
Miao, Xiaohe ;
Galilea, Adrian Ramirez ;
Pustovarenko, Alexey ;
Dikhtiarenko, Alla ;
Cadiau, Amandine ;
Aguilar-Tapia, Antonio ;
Hazemann, Jean-Louis ;
Kozlov, Sergey M. ;
Oud-Chikh, Samy ;
Cavallo, Luigi ;
Gascon, Jorge .
ACS CATALYSIS, 2019, 9 (08) :6910-6918
[10]   Electrofuels for the transport sector: A review of production costs [J].
Brynolf, Selma ;
Taljegard, Maria ;
Grahn, Maria ;
Hansson, Julia .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 81 :1887-1905