On global transformations of functional-differential equations of the first order

被引:1
作者
Tryhuk, V [1 ]
机构
[1] Tech Univ Brno, Fac Civil Engn, Dept Math, Brno 60200, Czech Republic
关键词
functional differential equations; ordinary differential equations; global transformations; functional equations in a single variable; functional equations in several variables;
D O I
10.1023/A:1022466701434
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper describes the general form of functional-differential equations of the first order with m(m greater than or equal to 1) delays which allows nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation f(t,uv,u(1)v(1),...,u(m)v(m)) = f(x,v,v(1),...,v(m))g(t,x,u,u(1),...,v(m))u+h(t,x,u,u(1),...,u(m))v for u not equal 0 is solved on R and a method of proof by J. Aczel is applied.
引用
收藏
页码:279 / 293
页数:15
相关论文
共 13 条
[1]  
ACZEL J, 1969, JAHRESBER DTSCH MATH, V71, P55
[2]  
ACZEL J, 1966, LECT FUNCTIONAL EQUA
[3]  
CERMAK J, 1995, GEORGIAN MATH J, V2, P1
[4]  
LADDE GS, 1987, OSCILLATION THEORY D
[5]   TRANSFORMATION AND CANONICAL-FORMS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
NEUMAN, F .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :349-357
[6]  
NEUMAN F, 1982, CZECH MATH J, V32, P488
[7]  
NEUMAN F, 1981, CZECH MATH J, V31, P87
[8]  
Neuman F., 1994, RESULTS MATH, V26, P354
[9]  
Neuman F., 1991, MATH ITS APPL E EURO, V52
[10]  
TRYHUK V, 1983, MATH SLOVACA, V33, P15