A coarse-grained deep neural network model for liquid water

被引:14
作者
Patra, Tarak K. [1 ]
Loeffler, Troy D. [1 ]
Chan, Henry [1 ]
Cherukara, Mathew J. [1 ]
Narayanan, Badri [2 ]
Sankaranarayanan, Subramanian K. R. S. [1 ,3 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA
[2] Univ Louisville, Dept Mech Engn, Louisville, KY 40202 USA
[3] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
关键词
COMPUTER-SIMULATIONS; POTENTIALS;
D O I
10.1063/1.5116591
中图分类号
O59 [应用物理学];
学科分类号
摘要
We introduce a coarse-grained deep neural network (CG-DNN) model for liquid water that utilizes 50 rotational and translational invariant coordinates and is trained exclusively against energies of similar to 30 000 bulk water configurations. Our CG-DNN potential accurately predicts both the energies and the molecular forces of water, within 0.9 meV/molecule and 54 meV/angstrom of a reference (coarse-grained bond-order potential) model. The CG-DNN water model also provides good prediction of several structural, thermodynamic, and temperature dependent properties of liquid water, with values close to those obtained from the reference model. More importantly, CG-DNN captures the well-known density anomaly of liquid water observed in experiments. Our work lays the groundwork for a scheme where existing empirical water models can be utilized to develop a fully flexible neural network framework that can subsequently be trained against sparse data from high-fidelity albeit expensive beyond-DFT calculations.
引用
收藏
页数:5
相关论文
共 22 条
  • [1] An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2
    Artrith, Nongnuch
    Urban, Alexander
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2016, 114 : 135 - 150
  • [2] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [3] Perspective: Machine learning potentials for atomistic simulations
    Behler, Joerg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (17)
  • [4] Atom-centered symmetry functions for constructing high-dimensional neural network potentials
    Behler, Joerg
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (07)
  • [5] Machine Learning Classical Interatomic Potentials for Molecular Dynamics from First-Principles Training Data
    Chan, Henry
    Narayanan, Badri
    Cherukara, Mathew J.
    Sen, Fatih G.
    Sasikumar, Kiran
    Gray, Stephen K.
    Chan, Maria K. Y.
    Sankaranarayanan, Subramanian K. R. S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (12) : 6941 - 6957
  • [6] Machine learning coarse grained models for water
    Chan, Henry
    Cherukara, Mathew J.
    Narayanan, Badri
    Loeffler, Troy D.
    Benmore, Chris
    Gray, Stephen K.
    Sankaranarayanan, Subramanian K. R. S.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [7] Screening billions of candidates for solid lithium-ion conductors: A transfer learning approach for small data
    Cubuk, Ekin D.
    Sendek, Austin D.
    Reed, Evan J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (21)
  • [8] A reappraisal of what we have learnt during three decades of computer simulations on water
    Guillot, B
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2002, 101 (1-3) : 219 - 260
  • [9] The atomic simulation environment-a Python']Python library for working with atoms
    Hjorth Larsen, Ask
    Mortensen, Jens Jorgen
    Blomqvist, Jakob
    Castelli, Ivano E.
    Christensen, Rune
    Dulak, Marcin
    Friis, Jesper
    Groves, Michael N.
    Hammer, Bjork
    Hargus, Cory
    Hermes, Eric D.
    Jennings, Paul C.
    Jensen, Peter Bjerre
    Kermode, James
    Kitchin, John R.
    Kolsbjerg, Esben Leonhard
    Kubal, Joseph
    Kaasbjerg, Kristen
    Lysgaard, Steen
    Maronsson, Jon Bergmann
    Maxson, Tristan
    Olsen, Thomas
    Pastewka, Lars
    Peterson, Andrew
    Rostgaard, Carsten
    Schiotz, Jakob
    Schutt, Ole
    Strange, Mikkel
    Thygesen, Kristian S.
    Vegge, Tejs
    Vilhelmsen, Lasse
    Walter, Michael
    Zeng, Zhenhua
    Jacobsen, Karsten W.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (27)
  • [10] Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements
    Holz, M
    Heil, SR
    Sacco, A
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (20) : 4740 - 4742