A near infrared spectroscopic assay for stalk soluble sugars, bagasse enzymatic saccharification and wall polymers in sweet sorghum

被引:42
作者
Wu, Leiming [1 ,2 ,3 ]
Li, Meng [2 ,4 ,5 ]
Huang, Jiangfeng [1 ,2 ,3 ]
Zhang, Hui [1 ,2 ,3 ]
Zou, Weihua [1 ,2 ,3 ]
Hu, Shiwei [1 ,2 ,3 ]
Li, Ying [1 ,2 ,3 ]
Fan, Chunfen [1 ,2 ,3 ]
Zhang, Rui [1 ,2 ]
Jing, Haichun [6 ]
Peng, Liangcai [1 ,2 ,3 ]
Feng, Shengqiu [1 ,2 ,3 ]
机构
[1] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Biomass & Bioenergy Res Ctr, Wuhan 430070, Peoples R China
[3] Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Peoples R China
[4] Natl Energy R&D Ctr Nonfood Biomass, Beijing 100193, Peoples R China
[5] China Agr Univ, Coll Agron & Biotechnol, Beijing 100193, Peoples R China
[6] Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China
关键词
Sweet sorghum; Near infrared spectroscopy (NIRS); Fermentable sugars; Cell wall polymers; Bioenergy crops; BIOMASS DIGESTIBILITY; H2SO4; PRETREATMENTS; ETHANOL-PRODUCTION; FEATURES; LIGNIN; FERMENTATION; NAOH;
D O I
10.1016/j.biortech.2014.11.073
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
In this study, 123 sweet sorghum (Sorghum bicolor L.) accessions and 50 mutants were examined with diverse stalk soluble sugars, bagasse enzymatic saccharification and wall polymers, indicating the potential near infrared spectroscopy (NIRS) assay for those three important parameters. Using the calibration and validation sets and modified squares method, nine calibration optimal equations were generated with high determination coefficient on the calibration (R-2) (0.81-0.99), cross-validation (R(2)cv) (0.77-0.98), and the ratio performance deviation (RPD) (2.07-7.45), which were at first time applied by single spectra for simultaneous assay of stalk soluble sugars, bagasse hydrolyzed sugars, and three major wall polymers in bioenergy sweet sorghum. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:118 / 124
页数:7
相关论文
共 31 条
[1]   C4 Plants as Biofuel Feedstocks: Optimising Biomass Production and Feedstock Quality from a Lignocellulosic PerspectiveFree Access [J].
Byrt, Caitlin S. ;
Grof, Christopher P. L. ;
Furbank, Robert T. .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2011, 53 (02) :120-135
[2]   Lignin modification improves fermentable sugar yields for biofuel production [J].
Chen, Fang ;
Dixon, Richard A. .
NATURE BIOTECHNOLOGY, 2007, 25 (07) :759-761
[3]  
Chen P., 2013, Biological Conversion of Biomass for Fuels and Chemicals: Explorations from Natural Utilization Systems Energy and environment series, P83
[4]   Biomass and Cellulosic Ethanol Production of Forage Sorghum Under Limited Water Conditions [J].
Cotton, Jon ;
Burow, Gloria ;
Acosta-Martinez, Veronica ;
Moore-Kucera, Jennifer .
BIOENERGY RESEARCH, 2013, 6 (02) :711-718
[5]   THE USE OF PRINCIPAL COMPONENTS IN THE ANALYSIS OF NEAR-INFRARED SPECTRA [J].
COWE, IA ;
MCNICOL, JW .
APPLIED SPECTROSCOPY, 1985, 39 (02) :257-266
[6]  
Dische Z., 1962, Methods Carbohydr. Chem, V1, P477
[7]   Application of FTIR spectroscopy for the quantification of sugars in mango juice as a function of ripening [J].
Duarte, IF ;
Barros, A ;
Delgadillo, I ;
Almeida, C ;
Gil, AM .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2002, 50 (11) :3104-3111
[8]  
Fry S.C., 1988, GROWING PLANT CELL W, P95
[9]   Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass [J].
Fu, Chunxiang ;
Mielenz, Jonathan R. ;
Xiao, Xirong ;
Ge, Yaxin ;
Hamilton, Choo Y. ;
Rodriguez, Miguel, Jr. ;
Chen, Fang ;
Foston, Marcus ;
Ragauskas, Arthur ;
Bouton, Joseph ;
Dixon, Richard A. ;
Wang, Zeng-Yu .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (09) :3803-3808
[10]  
Giesey A.T., 1955, APPL SPECTROSC, V9, P78, DOI [10.1366/000370255774634089, DOI 10.1366/000370255774634089]