3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization

被引:100
|
作者
Babilotte, Joanna [1 ]
Guduric, Vera [1 ]
Le Nihouannen, Damien [1 ]
Naveau, Adrien [1 ,2 ]
Fricain, Jean-Christophe [1 ,2 ]
Catros, Sylvain [1 ,2 ]
机构
[1] Univ Bordeaux, Tissue Bioengn, Bordeaux, France
[2] Univ Bordeaux, Fac Dent, Bordeaux, France
关键词
3D printing; bone regeneration; polymer; calcium phosphate(s); ceramic; EPSILON-CAPROLACTONE SCAFFOLDS; TRICALCIUM PHOSPHATE SCAFFOLD; PCL-TCP SCAFFOLDS; IN-VITRO; MECHANICAL-PROPERTIES; SURFACE MODIFICATION; OSTEOGENIC DIFFERENTIATION; NANOCOMPOSITE SCAFFOLDS; CALVARIAL DEFECT; STEM-CELLS;
D O I
10.1002/jbm.b.34348
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Applications in additive manufacturing technologies for bone tissue engineering applications requires the development of new biomaterials formulations. Different three-dimensional (3D) printing technologies can be used and polymers are commonly employed to fabricate 3D printed bone scaffolds. However, these materials used alone do not possess an effective osteopromotive potential for bone regeneration. A growing number of studies report the combination of polymers with minerals in order to improve their bioactivity. This review exposes the state-of-the-art of existing 3D printed composite biomaterials combining polymers and minerals for bone tissue engineering. Characterization techniques to assess scaffold properties are also discussed. Several parameters must be considered to fabricate a 3D printed material for bone repair (3D printing method, type of polymer/mineral combination and ratio) because all of them affect final properties of the material. Each polymer and mineral has its own advantages and drawbacks and numerous composites are described in the literature. Each component of these composite materials brings specific properties and their combination can improve the biological integration of the 3D printed scaffold. (c) 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2579-2595, 2019.
引用
收藏
页码:2579 / 2595
页数:17
相关论文
共 50 条
  • [31] Cell-Laden 3D Printed Scaffolds for Bone Tissue Engineering
    Piard C.M.
    Chen Y.
    Fisher J.P.
    Clinical Reviews in Bone and Mineral Metabolism, 2015, 13 (4): : 245 - 255
  • [32] 3D printed porous ceramic scaffolds for bone tissue engineering: a review
    Yu Wen
    Sun Xun
    Meng Haoye
    Sun Baichuan
    Chen Peng
    Liu Xuejian
    Zhang Kaihong
    Yang Xuan
    Peng Jiang
    Lu Shibi
    BIOMATERIALS SCIENCE, 2017, 5 (09) : 1690 - 1698
  • [33] Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds
    Lett, Jayasingh Anita
    Sagadevan, Suresh
    Leonard, Estelle
    Fatimah, Is
    Hossain, M. A. Motalib
    Mohammad, Faruq
    Al-Lohedan, Hamad A.
    Paiman, Suriati
    Alshahateet, Solhe F.
    Abd Razak, Saiful Izwan
    Johan, Mohd Rafie
    ARTIFICIAL ORGANS, 2021, 45 (12) : 1501 - 1512
  • [34] Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies
    Rahimnejad, Maedeh
    Rezvaninejad, Raziyehsadat
    Rezvaninejad, Rayehehossadat
    Franca, Rodrigo
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2021, 7 (06)
  • [35] Fabrication and Characterization of 3D Printed PLA
    Arora, Jassimran Kaur
    Bhati, Pooja
    PROCEEDINGS OF THE 35TH INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY (PPS-35), 2020, 2205
  • [36] Design, fabrication, and characterization of a composite scaffold for bone tissue engineering
    Boschett, F.
    Tomei, A. A.
    Turri, S.
    Swartz, M. A.
    Levi, M.
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2008, 31 (08): : 697 - 707
  • [37] Design, fabrication, and characterization of a composite scaffold for bone tissue engineering
    Boschetti, Federica
    Tomei, A.A.
    Turri, S.
    Swartz, M.A.
    Levi, M.
    International Journal of Artificial Organs, 2008, 31 (08): : 697 - 707
  • [38] Elastic 3D-Printed Nanofibers Composite Scaffold for Bone Tissue Engineering
    Cai P.
    Li C.
    Ding Y.
    Lu H.
    Yu X.
    Cui J.
    Yu F.
    Wang H.
    Wu J.
    EL-Newehy M.
    Abdulhameed M.M.
    Song L.
    Mo X.
    Sun B.
    ACS Applied Materials and Interfaces, 2023, 15 (47): : 54280 - 54293
  • [39] Elastic 3D-Printed Nanofibers Composite Scaffold for Bone Tissue Engineering
    Cai, Pengfei
    Li, Chunchun
    Ding, Yangfan
    Lu, Hanting
    Yu, Xiao
    Cui, Jie
    Yu, Fan
    Wang, Hongsheng
    Wu, Jinglei
    EL-Newehy, Mohamed
    Abdulhameed, Meera Moydeen
    Song, Liang
    Mo, Xiumei
    Sun, Binbin
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (47) : 54280 - 54293
  • [40] Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering
    Wright, L. D.
    Young, R. T.
    Andric, T.
    Freeman, J. W.
    BIOMEDICAL MATERIALS, 2010, 5 (05)