Monocular Depth Estimation Based on Deep Learning:A Survey

被引:18
作者
Ruan Xiaogang [1 ,2 ]
Yan Wenjing [1 ,2 ]
Huang Jing [1 ,2 ]
Guo Peiyuan [1 ,2 ]
Guo Wei [1 ,2 ]
机构
[1] BJUT, Inst Artificial Intelligence & Robot, Beijing, Peoples R China
[2] BJUT, Fac Informat Technol, Beijing, Peoples R China
来源
2020 CHINESE AUTOMATION CONGRESS (CAC 2020) | 2020年
关键词
monocular depth estimation; convolutional neural networks; deep learning; RGB images;
D O I
10.1109/CAC51589.2020.9327548
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Monocular depth estimation relied on RGB images is an important ill posed problem in the system of computer vision. Recently, people use the method of deep learning to discuss this problem. Most of the existing monocular depth estimation algorithms relied on convolution neural network. Depth estimation based on 2D images has important applications in image segmentation, 3D object detection, robot navigation, object tracking and autonomous driving. This paper gives a brief overview of this problem, reviews, evaluates and discusses the monocular depth estimation algorithms relied on deep learning, and looks forward to the direction of further research in the face of some challenges.
引用
收藏
页码:2436 / 2440
页数:5
相关论文
共 45 条
[1]   Generative Adversarial Networks for Unsupervised Monocular Depth Prediction [J].
Aleotti, Filippo ;
Tosi, Fabio ;
Poggi, Matteo ;
Mattoccia, Stefano .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 :337-354
[2]  
[Anonymous], 2012, 2012 IEEE COMP SOC C
[3]  
Babu VM, 2018, IEEE INT C INT ROBOT, P1082, DOI 10.1109/IROS.2018.8593864
[4]  
Byravan Arunkumar, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P173, DOI 10.1109/ICRA.2017.7989023
[5]   Estimating Depth From Monocular Images as Classification Using Deep Fully Convolutional Residual Networks [J].
Cao, Yuanzhouhan ;
Wu, Zifeng ;
Shen, Chunhua .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) :3174-3182
[6]   Unsupervised monocular depth and ego-motion learning with structure and semantics [J].
Casser, Vincent ;
Pirk, Soeren ;
Mahjourian, Reza ;
Angelova, Anelia .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, :381-388
[7]  
Eigen D, 2014, ADV NEUR IN, V27
[8]   Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture [J].
Eigen, David ;
Fergus, Rob .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2650-2658
[9]   Deep Ordinal Regression Network for Monocular Depth Estimation [J].
Fu, Huan ;
Gong, Mingming ;
Wang, Chaohui ;
Batmanghelich, Kayhan ;
Tao, Dacheng .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2002-2011
[10]   Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue [J].
Garg, Ravi ;
VijayKumar, B. G. ;
Carneiro, Gustavo ;
Reid, Ian .
COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 :740-756