The existence of subspace wavelet sets

被引:43
|
作者
Dai, X [1 ]
Diao, Y
Gu, Q
Han, D
机构
[1] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[3] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
frame; wavelet; frame wavelet; frame wavelet set; Fourier transform;
D O I
10.1016/S0377-0427(02)00893-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a reducing subspace of L-2(R-d) that is, a closed subspace of L-2(R-d) with the property that f(A(m)t - l) is an element of H for any f is an element of H, m is an element of Z and l is an element of Z(d), where A is a d x d expansive matrix. It is known that H is a reducing subspace if and only if there exists a measurable subset M of R-d such that A(t)M = M and F(H) = L-2(R-d) (.) chi(M). Under some given conditions of M, it is known that there exist A-dilation subspace wavelet sets with respect to H. In this paper, we prove that this holds in general. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [21] Subspace dual super wavelet and Gabor frames
    Tian, Yu
    Li, YunZhang
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (12) : 2429 - 2446
  • [22] fMRI activation detection in wavelet signal subspace
    Soltanian-Zadeh, H
    Hossein-Zadeh, GA
    Ardekani, BA
    MEDICAL IMAGING 2002: PHYSIOLOGY AND FUNCTION FROM MULTIDIMENSIONAL IMAGES, 2002, 4683 : 352 - 362
  • [23] Subspace dual super wavelet and Gabor frames
    Yu Tian
    YunZhang Li
    Science China Mathematics, 2017, 60 : 2429 - 2446
  • [24] DISK ALGEBRA IS NOT AN EXISTENCE SUBSPACE OF ITS BIDUAL
    BLATTER, J
    SEEVER, GL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (01) : 88 - 91
  • [25] Frame wavelet sets in R
    Dai, X
    Diao, Y
    Gu, Q
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (07) : 2045 - 2055
  • [26] WAVELET SETS ACCUMULATING AT THE ORIGIN
    Vyas, Aparna
    Dubey, Rajeshwari
    REAL ANALYSIS EXCHANGE, 2009, 35 (02) : 463 - 478
  • [27] Arbitrary bandwidth wavelet sets
    Evangelista, G
    Cavaliere, S
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 1801 - 1804
  • [28] On interpolation families of wavelet sets
    Gu, Q
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) : 2973 - 2979
  • [29] Wavelet representation of contour sets
    Bertram, M
    Laney, DE
    Duchaineau, MA
    Hansen, CD
    Hamann, B
    Joy, KI
    VISUALIZATION 2001, PROCEEDINGS, 2001, : 303 - 310
  • [30] Simple Wavelet Sets in Rn
    Merrill, Kathy D.
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 1295 - 1305