The existence of subspace wavelet sets

被引:43
|
作者
Dai, X [1 ]
Diao, Y
Gu, Q
Han, D
机构
[1] Univ N Carolina, Dept Math, Charlotte, NC 28223 USA
[2] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[3] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
frame; wavelet; frame wavelet; frame wavelet set; Fourier transform;
D O I
10.1016/S0377-0427(02)00893-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a reducing subspace of L-2(R-d) that is, a closed subspace of L-2(R-d) with the property that f(A(m)t - l) is an element of H for any f is an element of H, m is an element of Z and l is an element of Z(d), where A is a d x d expansive matrix. It is known that H is a reducing subspace if and only if there exists a measurable subset M of R-d such that A(t)M = M and F(H) = L-2(R-d) (.) chi(M). Under some given conditions of M, it is known that there exist A-dilation subspace wavelet sets with respect to H. In this paper, we prove that this holds in general. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:83 / 90
页数:8
相关论文
共 50 条
  • [1] Subspace Evasive Sets
    Dvir, Zeev
    Lovett, Shachar
    STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2012, : 351 - 358
  • [2] On wavelet sets
    Ionascu, EJ
    Larson, DR
    Pearcy, CM
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (06) : 711 - 721
  • [3] On wavelet sets
    Eugen J. Ionascu
    David R. Larson
    Carl M. Pearcy
    Journal of Fourier Analysis and Applications, 1998, 4 : 711 - 721
  • [4] Oversampling theorem for wavelet subspace
    Chen, W
    Itoh, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (01) : 131 - 138
  • [5] Large sets of subspace designs
    Braun, Michael
    Kiermaier, Michael
    Kohnert, Axel
    Laue, Reinhard
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 147 : 155 - 185
  • [6] A Multiresolution Wavelet based Subspace Identification
    Vajpayee, Vineet
    Mukhopadhyay, Siddhartha
    Tiwari, Akhilanand Pati
    IFAC PAPERSONLINE, 2016, 49 (01): : 247 - 253
  • [7] The optimum interpolatory approximation in wavelet subspace
    Kida, Y
    Kida, T
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 514 - 525
  • [8] An estimate of irregular sampling in wavelet subspace
    Chen, W
    Itoh, S
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (08) : 1751 - 1754
  • [9] On Supersets of Wavelet Sets
    Viriyapong, C.
    Sumetkijakan, S.
    ACTA APPLICANDAE MATHEMATICAE, 2009, 107 (1-3) : 173 - 193
  • [10] Wavelet sets in ℝn
    Xingde Dai
    David R. Larson
    Darrin M. Speegle
    Journal of Fourier Analysis and Applications, 1997, 3 : 451 - 456