Bi2MoO6/Bi2S3 S-scheme heterojunction for efficient photocatalytic oxygen evolution

被引:21
|
作者
Wu, Xuelian [1 ]
Zhang, Qitao [1 ]
Su, Chenliang [1 ]
机构
[1] Shenzhen Univ, Minist Educ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Shenzhen 518060, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Bi2MoO6; Step-scheme heterojunction; Water oxidation; Charge transfer; BIOX X; BI2MOO6; BI2S3; BR; MORPHOLOGY; NANOSHEETS; CL;
D O I
10.1016/j.flatc.2021.100244
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bi2MoO6 has emerged as a powerful visible-light-active oxidation photocatalyst with decent photocatalytic activity although further modifications are still essential to overcome its inherent high charge recombination efficiency. Among them, the strategy of constructing Bi2MoO6-based heterojunction has been demonstrated to be effective. In this work, a novel two-dimensional (2D) Bi2MoO6/Bi2S3 heterostructure was in situ fabricated via an anion exchange process, wherein [MoO6]2- layers were substituted by S2- ions. With simply tuning the concentration of S source (thiourea), the content of Bi2S3 can be easily controlled. The formed heterogeneous materials with appropriate Bi2S3 amount were found to substantially boost the yield of evolved oxygen under visible light irradiation, whereas excessive Bi2S3 is detrimental to the photoactivity. Comprehensive analysis disclosed a complementary band alignment between the two materials, whereby a step-scheme heterojunction was formed. The charge transfer mechanism was carefully proposed based on diverse characterization. Photogenerated electrons on Bi2MoO6 recombined with the holes on Bi2S3, while maintaining the strong oxidative capability of Bi2MoO6 and reductive capability of Bi2S3. The enhanced activity was attributed to the suppressed electron-hole recombination on the single catalyst, and the promoted charge transfer across the junction interface was demonstrated to be beneficial for better performance. Additionally, high concentration of Bi2S3 can inevitably cover the oxidation-active component, Bi2MoO6, which in turn decreased the photocatalytic performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Double bismuth-based Bi2S3/Bi2MoO6 S-scheme heterojunction for ultrafast photocatalytic removal of Cr(VI)
    Xing, Xu
    Zhang, Luxin
    Ren, Yue
    Li, Yunfeng
    Yu, Han
    Shi, Weiwei
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [2] Photocatalytic Degradation of Tetracycline and Copper Complex by Bi2MoO6/Bi2S3 Heterojunction
    Huang W.-X.
    Wei H.
    Jiang C.-Y.
    Wang Y.-P.
    Huanjing Kexue/Environmental Science, 2020, 41 (12): : 5488 - 5499
  • [3] Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution
    Wu, Xuelian
    Ng, Yun Hau
    Wen, Xiaoming
    Chung, Hoi Ying
    Wong, Roong Jien
    Du, Yi
    Dou, Shi Xue
    Amal, Rose
    Scott, Jason
    CHEMICAL ENGINEERING JOURNAL, 2018, 353 : 636 - 644
  • [4] Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution
    Amal, Rose (r.amal@unsw.edu.au), 1600, Elsevier B.V., Netherlands (353):
  • [5] Bi2MoO6/ZnIn2S4 S-scheme heterojunction containing oxygen vacancies for photocatalytic degradation of organic pollutant
    Wang, Dandan
    Lin, Zhaoxin
    Yang, Weiting
    Li, Hongji
    Su, Zhongmin
    JOURNAL OF MOLECULAR STRUCTURE, 2025, 1321
  • [6] In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance
    Zhongfu Li
    Zhaohui Wu
    Rongan He
    Long Wan
    Shiying Zhang
    JournalofMaterialsScience&Technology, 2020, 56 (21) : 151 - 161
  • [7] In2O3-x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance
    Li, Zhongfu
    Wu, Zhaohui
    He, Rongan
    Wan, Long
    Zhang, Shiying
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 56 (56): : 151 - 161
  • [8] Visible light driven S-scheme heterojunction Zn3In2S6/Bi2MoO6 for efficient degradation of metronidazole
    Wang, Chen
    Liu, Haiyan
    Wang, Guifang
    Huang, Wenyu
    Wei, Zongwu
    Fang, Haiyan
    Shen, Fang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 917
  • [9] An S-Scheme AgIn5S8/Bi2MoO6 Heterojunction for the Photocatalytic Degradation of Hydrochloride Tetracycline
    Yao, Xiaoqian
    Teng, Feng
    Yang, Tao
    Hu, Peng
    CHEMNANOMAT, 2024, 10 (07):
  • [10] Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction
    Xu, Xiutao
    Shao, Chunfeng
    Zhang, Jinfeng
    Wang, Zhongliao
    Dai, Kai
    ACTA PHYSICO-CHIMICA SINICA, 2024, 40 (10)