Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2

被引:32
作者
Keppel-Aleks, Gretchen [1 ]
Wolf, Aaron S. [2 ]
Mu, Mingquan [3 ]
Doney, Scott C. [4 ]
Morton, Douglas C. [5 ]
Kasibhatla, Prasad S. [6 ]
Miller, John B. [7 ,8 ]
Dlugokencky, Edward J. [8 ]
Randerson, James T. [3 ]
机构
[1] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA
[3] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA
[4] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA
[5] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA
[6] Duke Univ, Nicholas Sch Environm, Durham, NC USA
[7] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[8] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO USA
基金
美国国家科学基金会;
关键词
carbon cycle; climate variability; drought; fire; terrestrial ecosystems; atmospheric CO2; SEA-SURFACE TEMPERATURE; CARBON-DIOXIDE; CLIMATE; SENSITIVITY; FLUXES; EMISSION; SYSTEM; CYCLE; RESPIRATION; SEVERITY;
D O I
10.1002/2014GB004890
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997-2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.90.4 Pg C yr(-1)K(-1). These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses.
引用
收藏
页码:1295 / 1310
页数:16
相关论文
共 64 条
[31]   Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010 [J].
Jones, P. D. ;
Lister, D. H. ;
Osborn, T. J. ;
Harpham, C. ;
Salmon, M. ;
Morice, C. P. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[32]  
Kalnay E, 1996, B AM METEOROL SOC, V77, P437, DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO
[33]  
2
[34]   Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide [J].
Kasischke, ES ;
Hyer, EJ ;
Novelli, PC ;
Bruhwiler, LP ;
French, NHF ;
Sukhinin, AI ;
Hewson, JH ;
Stocks, BJ .
GLOBAL BIOGEOCHEMICAL CYCLES, 2005, 19 (01) :1-16
[35]   INTERANNUAL EXTREMES IN THE RATE OF RISE OF ATMOSPHERIC CARBON-DIOXIDE SINCE 1980 [J].
KEELING, CD ;
WHORF, TP ;
WAHLEN, M ;
VANDERPLICHT, J .
NATURE, 1995, 375 (6533) :666-670
[36]   Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries [J].
Keppel-Aleks, Gretchen ;
Randerson, James T. ;
Lindsay, Keith ;
Stephens, Britton B. ;
Keith Moore, J. ;
Doney, Scott C. ;
Thornton, Peter E. ;
Mahowald, Natalie M. ;
Hoffman, Forrest M. ;
Sweeney, Colm ;
Tans, Pieter P. ;
Wennberg, Paul O. ;
Wofsy, Steven C. .
JOURNAL OF CLIMATE, 2013, 26 (13) :4447-4475
[37]   Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning -: art. no. 1048 [J].
Langenfelds, RL ;
Francey, RJ ;
Pak, BC ;
Steele, LP ;
Lloyd, J ;
Trudinger, CM ;
Allison, CE .
GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (03)
[38]   Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level [J].
Mahecha, Miguel D. ;
Reichstein, Markus ;
Carvalhais, Nuno ;
Lasslop, Gitta ;
Lange, Holger ;
Seneviratne, Sonia I. ;
Vargas, Rodrigo ;
Ammann, Christof ;
Arain, M. Altaf ;
Cescatti, Alessandro ;
Janssens, Ivan A. ;
Migliavacca, Mirco ;
Montagnani, Leonardo ;
Richardson, Andrew D. .
SCIENCE, 2010, 329 (5993) :838-840
[39]   Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species [J].
Nassar, R. ;
Jones, D. B. A. ;
Suntharalingam, P. ;
Chen, J. M. ;
Andres, R. J. ;
Wecht, K. J. ;
Yantosca, R. M. ;
Kulawik, S. S. ;
Bowman, K. W. ;
Worden, J. R. ;
Machida, T. ;
Matsueda, H. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (02) :689-716
[40]   Large-scale impoverishment of Amazonian forests by logging and fire [J].
Nepstad, DC ;
Veríssimo, A ;
Alencar, A ;
Nobre, C ;
Lima, E ;
Lefebvre, P ;
Schlesinger, P ;
Potter, C ;
Moutinho, P ;
Mendoza, E ;
Cochrane, M ;
Brooks, V .
NATURE, 1999, 398 (6727) :505-508