Semi-almost periodic Fourier multipliers on rearrangement-invariant spaces with suitable Muckenhoupt weights

被引:2
作者
Fernandes, C. A. [1 ]
Karlovich, A. Yu. [1 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Ctr Matemat & Aplicacoes, P-2829516 Quinta Da Torre, Caparica, Portugal
来源
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA | 2020年 / 26卷 / 03期
关键词
Rearrangement-invariant Banach function space; Boyd indices; Muckenhoupt weight; Almost periodic function; Semi-almost periodic function; Fourier multiplier; WIENER-HOPF OPERATORS; TOEPLITZ-OPERATORS; MATRIX SYMBOLS; SPECTRUM;
D O I
10.1007/s40590-020-00276-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X(R) be a separable rearrangement-invariant space and w be a suitable Muckenhoupt weight. We show that for any semi-almost periodic Fourier multiplier a on X(R, w) = {f : fw is an element of X(R)} there exist uniquely determined almost periodic Fourier multipliers a(l), a(r) on X(R, w), such that a = (1 - u)a(1) + ua(r) +a(0), for some monotonically increasing function u with u(-infinity) = 0, u(+infinity) = 1 and some continuous and vanishing at infinity Fourier multiplier a(0) on X(R, w). This result extends previous results by Sarason (Duke Math J 44:357-364, 1977) for L-2(R) and by Karlovich and Loreto Herna ' ndez (Integral Equ Oper Theor 62:85-128, 2008) for weighted Lebesgue spaces L-p(R, w) with weights in a suitable subclass of the Muckenhoupt class A(p)(R).
引用
收藏
页码:1135 / 1162
页数:28
相关论文
共 36 条
[1]  
[Anonymous], 1997, Progress in Mathematics
[2]  
[Anonymous], 1979, Integral equations with fixed singularities
[3]  
[Anonymous], 2014, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation,, DOI [DOI 10.1007/978-3-0348-0648-0_17, DOI 10.1007/978-3-0348-0648-0-17]
[4]  
Bennett C., 1988, Interpolation of Operators
[5]   On the Fredholm index of matrix Wiener-Hopf plus/minus Hankel operators with semi-almost periodic symbols [J].
Bogveradze, Giorgi ;
Castro, Luis P. .
OPERATOR ALGEBRAS, OPERATOR THEORY AND APPLICATIONS, 2008, 181 :143-158
[6]  
Böttcher A, 2003, OPER THEOR, V142, P59
[7]   TOEPLITZ-OPERATORS WITH SEMI-ALMOST PERIODIC SYMBOLS ON SPACES WITH MUCKENHOUPT WEIGHT [J].
BOTTCHER, A ;
KARLOVICH, YI ;
SPITKOVSKY, IM .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 18 (03) :261-276
[8]   Toeplitz operators with frequency modulated semi-almost periodic symbols [J].
Böttcher, A ;
Grudsky, S ;
Spitkovsky, L .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (05) :523-535
[9]   Toeplitz operators with semi-almost-periodic matrix symbols on Hardy spaces [J].
Böttcher, A ;
Karlovich, YI ;
Spitkovsky, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :115-136
[10]   The spectrum is discontinuous on the manifold of Toeplitz operators [J].
Böttcher, A ;
Grudsky, S ;
Spitkovsky, I .
ARCHIV DER MATHEMATIK, 2000, 75 (01) :46-52