Negative refraction in conventional and additively manufactured phononic crystals

被引:0
|
作者
Astolfi, Lorenzo [1 ]
Watson, Richard L. [1 ]
Hutchins, David A. [1 ]
Thomas, Peter J. [1 ]
Askari, Meisam [2 ]
Clare, Adam T. [2 ]
Nie, Luzhen [3 ]
Freear, Steven [3 ]
Laureti, Stefano [4 ]
Ricci, Marco [4 ]
机构
[1] Univ Warwick, Sch Engn, Coventry, W Midlands, England
[2] Univ Nottingham, Dept Mech Mat & Mfg Engn, Nottingham, England
[3] Univ Leeds, Sch Elect & Elect Engn, Leeds, W Yorkshire, England
[4] Univ Calabria, Dept Informat Modelling Elect & Syst Engn, Arcavacata Di Rende, Italy
来源
2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2019年
基金
英国工程与自然科学研究理事会;
关键词
Metamaterial; Phononic Crystal; Laser Powder Bed Fabrication; Selective Laser Melting; Band Gaps; Negative Refraction;
D O I
10.1109/ultsym.2019.8926236
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Phononic crystals are acoustic metamaterials designed to manipulate sound when its wavelength is in the order of magnitude of the crystal lattice constant. Metallic phononic crystals for use in water were assembled using commercially available stainless steel rods with an average superficial roughness R-a=0.5 +/- 0.5 mu m, while Laser Powder Bed Fabrication, an additive manufacturing technique, was employed to produce similar Inconel 718 structures with R-a=20 +/- 6 mu m. Experiments in the 150 - 500 kHz frequency range indicated that acoustic band gaps and negative refraction were present in both cases, with similar features. This indicates that Laser Powder Bed Fabrication is a promising method for realising such phononic crystals.
引用
收藏
页码:2529 / 2532
页数:4
相关论文
共 50 条
  • [31] Negative refraction in photonic crystals
    Notomi, M
    OPTICAL AND QUANTUM ELECTRONICS, 2002, 34 (1-3) : 133 - 143
  • [32] Metal additively manufactured phononic materials as ultrasonic filters in nonlinear ultrasound measurementsa)
    Smith, Elizabeth J.
    Matlack, Kathryn H.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (06): : 3739 - 3750
  • [33] Surface integrity of conventional and additively manufactured nickel superalloys: A review
    Chittewar, Suresh L.
    Patil, Nilesh G.
    MATERIALS TODAY-PROCEEDINGS, 2021, 44 : 701 - 708
  • [34] EVALUATION OF ELECTRON PROPERTIES OF ADDITIVELY MANUFACTURED AND CONVENTIONAL ALUMINIUM ALLOYS
    Vandzura, Radoslav
    Gelatko, Matus
    Hatala, Michal
    Botko, Frantisek
    Radchenko, Svetlana
    MM SCIENCE JOURNAL, 2024, 2024 : 8061 - 8065
  • [35] Comparison of hydrogen effects on additively manufactured and conventional austenitic steels
    Nietzke, Jonathan
    Konert, Florian
    Poka, Konstantin
    Merz, Benjamin
    Sobol, Oded
    Boellinghaus, Thomas
    ENGINEERING FAILURE ANALYSIS, 2025, 167
  • [36] Arbitrary-curved waveguiding and broadband attenuation in additively manufactured lattice phononic media
    Krushynska, Anastasiia O.
    Anerao, Nitesh
    Badillo-Avila, Miguel A.
    Stokroos, Martin
    Acuautla, Monica
    MATERIALS & DESIGN, 2021, 205
  • [37] Photonic crystals produce negative refraction
    不详
    LASER FOCUS WORLD, 2003, 39 (07): : 11 - 11
  • [38] Negative refraction in crystals with spatial dispersion
    Silvestri, L
    Dubovski, OA
    La Rocca, GC
    Bassani, F
    Agranovich, VM
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2004, 27 (05): : 437 - 448
  • [39] Designed negative refraction in photonic crystals
    Li, Zhi-Yuan
    Feng, Shuai
    Feng, Zhi-Fang
    Ren, Kim
    Cheng, Bing-Ying
    Zhang, Dao-Zhong
    PROCEEDINGS OF INTERNATIONAL SYMPOSIUM ON BIOPHOTONICS, NANOPHOTONICS AND METAMATERIALS, 2006, : 408 - 408
  • [40] Negative refraction in semiconductor photonic crystals
    Qiu, M
    Ruan, ZC
    Berrier, A
    Xiao, SS
    Mulot, M
    Swillo, M
    Anand, S
    He, S
    Thylén, L
    SEMICONDUCTOR AND ORGANIC OPTOELECTRONIC MATERIALS AND DEVICES, 2005, 5624 : 345 - 352